
Notes on Drawing Logic Diagrams with LaTeX

Adrian P. Robson

29 January 2020

These are notes on some methods for drawing logic gate diagrams in LATEX
with its TikZ package. The circuits.logic.us and positioning libraries
are used.

Contents
1 Drawing Connectors 1

1.1 Stepped Connectors . 1
1.2 Straight Connections . 3
1.3 Splitting Connectors . 4
1.4 Dots and Jumps . 6

2 Drawing Gates 7
2.1 Input Spacing . 7
2.2 Labelling Lines . 8
2.3 Positioning Gates . 9

A Intersection Operator 11

1 Drawing Connectors
Connectors should be composed of only vertical or horizontal lines for good
style. There are two possibilities for a point to point connector: straight or
stepped.

1.1 Stepped Connectors
To draw a stepped connector, a coordinate with a x-value that gives the
location of the vertical part of the connection is used. The coordinate’s

1

join absolute

offset
join offset

join mid-point

start

end

Figure 1: Stepped Simple Connector

y-value does not have to be precise, but it must be between the y-values of
the start and end points.

This coordinate is used to draw the connection as follows, where it is
called join:

1 \draw (start) -| (join) (join) |- (end);

This draws the connector as two right angled lines meeting at the join
coordinate.

The position of the join coordinate can be defined using absolute, offset or
mid-point methods, as illustrated in figure 1, which shows the three possible
join coordinates.

The absolute method is implemented with:

1 \coordinate (join) at (1,-0.5);

This defines a coordinate called join at an absolute position. Its x-value
gives the horizontal location of the connector’s vertical part. Its y-value
must be between the vertical part’s top and bottom points.

The offset method is a little more complicated:

1 \def\relx{1}
2 \path (start) ++(right:\relx) coordinate (join);

Line 1 defines a horizontal offset value. It must be less than the con-
nector’s available horizontal space.

Line 2 creates a coordinate that is shifted right from the start coor-
dinate. Its x-value is the horizontal position of the connection’s
vertical part. Its y-value is always within its acceptable range.

The mid-point method is simple:

2

0 1 2 3

0

-1

S

E
endLoc

mark

Figure 2: Straight Simple Connectors

1 \path (start) -- coordinate(join) (end);

This creates a coordinate horizontally half way between the connec-
tions start and end points. Its x-value and y-value are always within
acceptable limits.

1.2 Straight Connections
For straight connections the start and end connection points have to be
aligned. If a node’s connection point is off its centre, then simple relative or
absolute node alignment will not work. Unfortunately, this is is the case for
most logic gate inputs.

Figure 2 illustrates a method for aligning connector end points. It uses
square nodes instead of gates for simplicity. It shows the horizontal alignment
of a node’s south east corner and another node’s north west corner.

In the following example, the actual connection is not drawn. An absolute
method is used, but it could be easily adapted to use a relative offset to place
the end node. The relevant code is:

1 \node at (0,0) [draw,minimum size=8mm] (start) {S};
2 \coordinate (mark) at (1.5,0.25);
3 \coordinate (endLoc) at (start.south east -| mark);
4 \node [draw,minimum size=8mm,anchor=north west]
5 (end) at (endLoc) {E};

Line 1 makes a rectangle node called start at an absolute position.

Lines 2 defines a coordinate called mark at an absolute position. Its x-value
is the horizontal position of the end connection point. Its y-value is
not important, but it should be given a reasonable value to help with
possible debugging.

3

0 1 2 3

0

-1

c1

c2

c3

mark absoluteoffset
mark offset

mark middle

intersection

Figure 3: Splitting Connectors – Methods

Line 3 calculates the required position of end node’s end.north west anchor.
It uses TikZ’s intersection operator (see appendix A), which here finds
the intersection of a line the goes vertically through mark and the
horizontal line that goes through the anchor start.south east, and
calls it endLoc.

Line 4–5 makes a rectangular node called end. It is positioned so that its
north west anchor is in the same place as endLoc calculated above.

Thus, a line connecting start.south east and end.north west will be
horizontal; and can be drawn with the following:

1 \draw (start.south east) -- (end.north west);

1.3 Splitting Connectors
Connecting the output of a gate to the inputs of more than one other gate
is common. Here are absolute, offset and mid-point methods for doing this.
Figure 3 illustrates how a split point can be calculated using these methods.
They are, in part, the same as those used for stepped connectors. The
following discussion assumes that all of the gates have been previously drawn,
and a split connector is needed between point c1 and both c2 and c3.

1. First a coordinate called mark that defines the position of the connector’s
vertical part is defined. The following methods are the same as those
used in §?? for drawing stepped connectors.

The absolute method is very simple:

4

c1

c2

c3

split

Figure 4: Splitting Connectors – Lines

1 \coordinate (mark) at (1,0.25);

This defines mark at an absolute position. Its x-value gives the
horizontal location of the connector’s vertical part. Its y-value
must be between the vertical part’s top and bottom points.

The offset method is implemented with:
1 \def\relx{1}
2 \path (c1) ++(right:\relx) coordinate (mark);

Here the \relx value gives the horizontal offset of mark from point
c1.

The mid-point method puts the split point half way between the
connected nodes. This is done with

1 \path (c1) -- coordinate(mark) (c2);

This creates mark half way between nodes c1 and c2.

2. Next the position of the split point is calculated:

1 \coordinate (split) at (mark |- c2);

This uses TikZ’s intersection operator (see appendix A), which here
finds the intersection of a line the goes vertically through the mark
coordinate and the horizontal line that goes through the point c2.

3. Once the split point is established, the connector can be drawn though
this coordinate:

1 \draw (c1) -| (split) (split) -- (c2)
2 (split) |- (c3);

This draws three lines connecting the nodes to the split point. Figure 4
shows the diagram with lines added.

5

c1

c2

c3

Figure 5: Splitting Connectors – Split Dot

c1

c2 c3

c4 c5

c6

Figure 6: Crossing Points

1.4 Dots and Jumps
A dot can be put at the split point as shown in figure 5. First the following
is put in the document’s preamble:

1 \newcommand{\splitmark}[2]{(#1)
2 node[circle, fill, inner sep= 0pt, outer sep= 0pt,
3 minimum size= 2*#2]{}%
4 }

This macro takes two parameters: The first is a coordinate that gives the
location of the split point, and the second is the radius of the dot. The
splitmark macro is used in the path that draws the connection where split
is the split point, like this:

1 \draw (c1) -| \splitmark{split}{2pt} -- (c2)
2 (split) |- (c3);

Jumps can be added to lines at crossing points as shown in figure 6, where
there is also a non-jumping crossing for comparison. In this example, the
jump is to the right on the diagram’s down going vertical connector, but
macros are given for all cardinal directions. Put the following in the preamble:

6

1 \newcommand{\jumpD}[2]{([shift={(0mm,#2)}]#1)
2 arc[start angle= 90, end angle= -90, radius= #2]%
3 }
4 \newcommand{\jumpU}[2]{([shift={(0mm,-#2)}]#1)
5 arc[start angle= -90, end angle= 90, radius= #2]%
6 }
7 \newcommand{\jumpR}[2]{([shift={(-#2,0)}]#1)
8 arc[start angle= 180, end angle= 0, radius= #2]%
9 }

10 \newcommand{\jumpL}[2]{([shift={(#2,0)}]#1)
11 arc[start angle= 0, end angle= 180, radius= #2]%
12 }

These macros take two parameters: The first is a coordinate that gives the
location of the jump point, and the second is the radius of the jump arc.
They use coordinate shift notation to align the jump arc with the crossing
point. With the macros in the preamble, the jump shown in figure 6 can be
drawn with:

1 \coordinate (mark) at (1,0.25);
2 \coordinate (crosspoint) at (mark |- c5);
3 \draw (c2) -- (c3) (c4) -- (c5)
4 (c1) -| \jumpD{crosspoint}{1mm} |- (c6);

Line 1 defines a coordinate that give the horizontal position of the jump
point. Its y-value is not used. It is called mark.

Line 2 calculates the intersection point of a vertical line through mark and a
horizontal line through c5. It is called crosspoint.

Line 3 draws two horizontal connectors.

Line 4 draws a stepped connector between c1 and c6. The jumpD macro
draws the jump arc around crosspoint.

2 Drawing Diagrams

2.1 Drawing Gates
To draw logic gate diagrams, the following should be put in the document
preamble:

7

and gate or gate

nand gate nor gate

xor gate not gate

xnor gate buffer gate

Figure 7: Gate Node Shapes

1 \usepackage{tikz}
2 \usetikzlibrary{circuits.logic.US}
3 \usetikzlibrary{positioning}

The circuit logic US option, which gives logic gates a ‘distinctive’ style1,
should be used for the tikzpicture environment:

1 \begin{tikzpicture}[circuit logic US]
2 ...
3 \end{tikzpicture}

Gates are drawn as nodes. The available shapes are shown in figure ??.
So to draw an AND gate at an absolute position the following could be used:

1 \node [and gate] (and1) at (1,3) {};

This produces a gate with two normal inputs. If more inputs or negated inputs
are wanted, use the inputs option. The following, which are equivalent, draw
an OR gate with three inputs, the top one of which negated:

1 \node [or gate,inputs={inverted,normal,normal}] (or1) {};
2 \node [or gate,inputs=inn] (or1) {};

The gate looks like this:

1IEEE Std 91/91a

8

Gate nodes have anchors for their output and inputs. The output anchor
is named output, and for multi-input gates, the inputs are named input n,
where n is an integer. The top input anchor is input 1, the next down is
input 2 and so on. So the bottom input of a three input gate called lastgate
would be called lastgate.input 3. Single input gates, like not gate and
buffer gate, can have only one input anchor, and it is called input.

output
input 1

input 2
input 3 outputinput

2.2 Input Spacing
The standard key logic gate input sep unfortunately changes the size of
the gate symbol. An alternative is to use a dummy input to move the inputs
apart without changing the gate’s size:

Default With dummy input

5 \node [and gate,inputs=nnn] (and2) at (0,0) {};
6 \draw (and2.input 1) -- ++(left:4mm);
7 % and2.input 3 is dummy
8 \draw (and2.output) -- ++(right:4mm);

2.3 Aligning Input and Output End Points
Neatly positioning the ends of a logic gate diagram’s input and output lines is
difficult. Absolute coordinates do not work because they cannot be accurately
vertically aligned with gate anchors. Relative positioning does not cope with
negated inputs, as the following demonstrates:

1 \node [or gate, inputs={inverted,normal}] (or1) {};
2 \draw (or1.input 1) -- ++(left:0.3);
3 \draw (or1.input 2) -- ++(left:0.3);

9

The solution in both cases is to use the intersection operator (see ap-
pendix A). First create a coordinate that specifies the horizontal position of
the start of the input lines:

Absolute method:

1 \coordinate (start) at (-0.7,0);

The start coordinate’s y-value is irrelevant.

Relative method:

1 \draw (or1.input 1) ++(left:0.3) coordinate (start);

Any of the gate’s input anchors could have been used.

Then draw the lines with the help of the intersection operator:

1 \draw (or1.input 1 -| start) -- (or1.input 1);
2 \draw (or1.input 2 -| start) -- (or1.input 2);

The gate would then look like this:

2.4 Labelling Input and Output Lines
For wide spaced inputs this looks good:

A
B

A.B

1 \draw (and1.input 1) -- node[at end,left]{A} ++(left:4mm);
2 \draw (and1.input 3) -- node[at end,left]{B} ++(left:4mm);
3 \draw (and1.output) -- node[at end,right]{A.B} ++(right:4mm);

Narrow spaced inputs might need different placement:

A

B
A.B

10

1 \draw (and1.input 1) -- node[at end,above left]{A}
2 ++(left:4mm);
3 \draw (and1.input 2) -- node[at end,below left]{B}
4 ++(left:4mm);
5 \draw (and1.output) -- node[at end,right]{A.B} ++(right:4mm);

Negated inputs cause problems, but the intersection method used in §??
can be used. As an example, an absolute method with wide spaced inputs is
used:

A
B

A+B

1 \coordinate (start) at (-0.7,0);
2 \draw (or1.input 1) -- node[at end,left]{A}
3 (or1.input 1 -| start);
4 \draw (or1.input 3) -- node[at end,left]{B}
5 (or1.input 3 -| start);

2.5 Positioning Gates
Positioning gates for straight connectors has been previously discussed (§1.2).
Here the more general problem of positioning logic gates is explored. Gates
can be positioned with absolute coordinates, relatively or with a matrix. A
combination or at least two of these is normal. Lets see how the following
diagram can be drawn using absolute and relative methods.

11

Absolute method

1 \begin{tikzpicture}[circuit logic US, scale=2]
2 \def\inx{0.25} % input x-coord
3 \def\outx{3.25} % output x-coord
4 \def\gxa{1} % gate column 1
5 \def\cxa{1.75} % connector column
6 \def\gxb{2.55} % gate column 2
7 \def\gya{0} % gate row 1
8 \def\gyb{-1} % gate row 2
9 \def\gyc{-0.5} % gate row 3

10 \node [or gate, inputs={inverted,normal}] (or1)
11 at (\gxa,\gya) {};
12 \node [or gate] (or2) at (\gxa,\gyb) {};
13 \node [and gate] (and1) at (\gxb,\gyc) {};
14 \draw (or1.input 1 -| \inx,0) -- (or1.input 1);
15 \draw (or1.input 2 -| \inx,0) -- (or1.input 2);
16 \draw (or2.input 1 -| \inx,0) -- (or2.input 1);
17 \draw (or2.input 2 -| \inx,0) -- (or2.input 2);
18 \draw (or1.output) -- (or1.output -| \cxa,0)
19 |- (and1.input 1);
20 \draw (or2.output) -- (or2.output -| \cxa,0)
21 |- (and1.input 2);
22 \draw (and1.output) -- (and1.output -| \outx,0);
23 \end{tikzpicture}

Lines 2–9 define macros for coordinate values, which makes adjusting
the layout much easier.

Lines 10–13 draw three gates in two columns.
Lines 14–17 draw four input lines for the leftmost gates. Intersection

with (\inx,0) is used to get a neat alignment of start points. See
§?? for an equivalent method that uses a named coordinate.

Lines 18–21 draw stepped connectors from the OR gates’ outputs to
the AND gate’s inputs. Intersection of the OR gate output’s with
(\cxa,0) is used to align the vertical parts of the connectors.
See §?? for an equivalent absolute method that uses a named
coordinate.

Line 22 draws an output for the left gate using path intersection with
(\outx,0) to fix its end point.

12

Relative method
This is a much more compact method.

1 \begin{tikzpicture}[circuit logic US, scale=2,
2 node distance=0.4]
3 \node [or gate, inputs={inverted, normal}] (or1) {};
4 \node [or gate, below=of or1] (or2) {};
5 \node [and gate, right=of or1, xshift=3mm,
6 yshift=-5mm] (and1) {};
7 \draw (or1.input 1) ++(left:3mm) coordinate (start);
8 \draw (or1.input 1 -| start) -- (or1.input 1);
9 \draw (or1.input 2 -| start) -- (or1.input 2);

10 \draw (or2.input 1 -| start) -- (or2.input 1);
11 \draw (or2.input 2 -| start) -- (or2.input 2);
12 \draw (or1.output) -- ++(right:3mm) |- (and1.input 1);
13 \draw (or2.output) -- ++(right:3mm) |- (and1.input 2);
14 \draw (and1.output) -- ++(right:3mm);
15 \end{tikzpicture}

Line 3 draws a base gate called or1 at (0,0).
Line 4 draws the next OR gate directly below this using default auto-

matic placement. Note that the node distance has been adjusted
in line 2.

Lines 5–6 draw an AND gate to the right of the OR gates. Its position
is adjusted.

Line 7 creates a coordinate called start that is used to locate the start
of the diagram’s input lines

Lines 8–11 draw the OR gates input lines. The intersection operator is
used to vertically align their start points.

Lines 12–13 draw stepped connectors between the OR and AND gates.
Line 14 draws the output line for the AND gate.

A Intersection Operator
To draw logic diagrams,vertical and horizontal lines have to be positioned,
and connector split and jump points have to be found. TekZ’s intersection
operation can help with this. Consider the following code:

13

1 \coordinate (X) at (A -| B);
2 \coordinate (Y) at (A |- B);

This creates coordinates X and Y at the intersections of horizontal and vertical
of lines extended from points A and B, as the following diagram illustrates:

A

B

X

Y

14

