
A Problem with the SciTE Go Command

on Linux

Adrian P. Robson
adrian.robson@nepsweb.co.uk

22nd February, 2012

1 A Problem with Input

Programs launched with SciTE’s Go command command on Linux cannot use
the standard input stream . . .

The standard input and output streams of a launched program are directed
to SciTE’s output pane, where output can be printed, and input can be typed
in. Unfortunately on Linux, the input stream just returns End-of-File and all
typed input is ignored.

This appears to be a problem only with Linux. Program input works when
SciTE is running on Windows. SciTE has no documentation relating to this
problem.

2 Resolving the Problem

The above problem with the Go command cannot be properly fixed in SciTE or
Linux, but it there is a solution by defining a new ‘Go in Terminal’ command
as follows:

if PLAT_GTK

command.name.〈number〉.〈filepattern〉=Go in Terminal

command.〈number〉.〈filepattern〉=gnome-terminal -x sh -c "\

$(command.go.〈filepattern〉);\
echo;\

read -p 'hit enter to close ...' x\

"

Where 〈number〉 and 〈filepattern〉 are replaced by appropriate values. For
example:

if PLAT_GTK

command.name.0.*.java=Go in Terminal

command.0.*.java=gnome-terminal -x sh -c "\

$(command.go.*.java);\

echo;\

read -p 'hit enter to close ...' x\

"



The new command appears in the Tool menu if a file matching 〈filepattern〉
is in the active buffer. Now instead of launching the program with the Go
command, the Go in Terminal command is used instead. This opens a terminal
window to run the program and the input stream works as expected.

3 Deployment

The new command can be put in local, directory or user properties files. How-
ever, it is normally best to put it in user properties. Separate versions of the
Go in Terminal command, with distinct 〈filepattern〉, are needed for each pro-
gramming language that has input stream problems. Using 0 for 〈number〉 is
probably a good choice, since this is not used by most of the standard assign-
ments, but the global language, user and relevant local and directory properties
should be checked.

4 Limitations

Two techniques have to be defined before the limitations of this approach can
be described:

Command indirection is using a command variable as an assignment to an-
other command variable. For example:

command.go.*.java=java $(FileName)

...

command.name.4.*.java=Demo

command.4.*.java=$(command.go.*.java)

So in this case, invoking Demo actually executes the Go command.

LHS assignment is using a variable on the left hand side of an assignment.
For example:

filepattern=*.java

command.go.$(filepattern)=java $(FileName)

The limitation of this solution can now be simple stated: Command indirection
cannot be used with LHS assignment.

In particular, the Go in Terminal command given in §2 uses command in-
direction, so LHS assignment must not not be used by the Go command. For-
tunately, many of SciTE’s supported languages, including Java and Python, do
not use LHS assignment. So they are compatible with this solution.

There are problems with some languages such as Lisp, Perl and C++. The
solution in these cases is reform the given Go in Terminal command to use the
standard file patterns, but to explicitly give the relevant Linux command to
execute the program.

2


