
Python XML Element Trees

Adrian P. Robson

22 October 2015

Here we describe solutions to some problems that might be en-
countered working with the xml.etree.ElementTree package.

1 Sorting

There is no completely generic solution for sorting XML trees because pos-
sible XML schema are too diverse.1 However there are particular solutions,
and as an example we will sort an XML address book that looks like this:

<book>

<address name="John Smith" sort="smithjohn">

<tel>2222</tel>

</address>

<address name="Joe Brown" sort="brownjoe">

<tel>4444</tel>

</address>

</book>

The following function shows how this XML data can be sorted by the sort

attribute in its address element. Its single parameter is the root of the tree
to be sorted; and the function returns a sorted copy of this tree. The original
tree is unchanged.

1 import xml.etree.ElementTree as ET

2 ...

3 def sortXmlAddrs(book):

4

5 def getkey(address):

1This is probably the reason why the element tree package does not provided a sort
facility.

1

6 return address.get("sort").upper()

7

8 roottag = book.tag # save root fields

9 roottext = book.text

10 roottail = book.tail

11 stree = ET.Element(None) # dummy tree

12 stree[:] = sorted(book,key=getkey)

13 stree.tag = roottag # restore root fields

14 stree.text = roottext

15 stree.tail = roottail

16 return stree

The actual sort is performed at line 12. The assignment at line 11 creates
a variable of the correct type, and the use of[:] in line 12 preserves this
type after the assignment of the sorted structure.2 A side-effect of the sort
operation is the removal of the root element’s tag, text, and tail fields.
Lines 8-10 and 13-16 correct this problem.

Unfortunately, sorting the address book is not completely successful be-
cause the operation does not correctly manage the indentation used in the
example. This is a general problem with sorting the contents of an XML ele-
ment that is of mixed complex type. In this case, it can be fixed by applying
the indent function given in §3 to the sorted tree.

The sort function given above might be used like this:

1 try:

2 book = ET.parse("test.xml").getroot()

3 except Exception as x:

4 print("XML parse failed because {}".format(x))

5 return

6 sbook = sortXmlAddrs(book)

2 Copying XML Trees

Here we distinguish between shallow and deep copies of tree or list data
structures. A shallow copy assigns a reference to the original data structure;
and after the copy, modifying the the new variable also changes the original.
A deep copy produces a distinct clone of the original that is completely
independent from the original.

Examples of shallow cop[y are simple assignment and ElementTree cre-
ation: In Python an assignment creates a reference to the original data:

2This Python alchemy is needed because of the language’s dynamic type system.

2

1 book = ET.parse("book.xml")

2 nbook = book.getroot() # shallow copy!

XML trees are Python lists, and this means that the variables book and
nbook are references to the same XML tree, and a modification to one will
thus also change the other. Creating a new ElementTree object might imply
that we are getting a completely new tree, but it actually produces a shallow
copy:

1 nbook = ET.ElementTree(book.getroot()) # shallow copy!

Again book and nbook are references to the same XML tree.
A shallow copy is often inadequate, and we must have a deep copy of a

XML tree. There are a couple of easy ways to do this: We can use strings,
or the copy package. Converting the XML tree to a string and then back to
a tree produces a deep copy:

1 nbook = ET.fromstring(ET.tostring(book.getroot()))

Now we get separate data structures, and a change to nbook will not affect
book.

Perhaps the simplest way to get a deep copy is the use the copy package
like this:

1 from copy import deepcopy

2 ...

3 book = ET.parse("book.xml")

4 nbook=deepcopy(book.getroot())

3 Indenting

The following ‘pretty print’ function fills XML element text and tail fields
with appropriate newlines and spaces. It is recursive:

1 def indent(elem, level=0):

2

3 INDENT = " "

4

5 def sindent(elem, indents):

6 if not elem.text or not elem.text.strip():

7 elem.text = "\n" + INDENT * indents

8

3

9 def eindent(elem, indents):

10 if not elem.tail or not elem.tail.strip():

11 elem.tail = "\n" + INDENT * indents

12

13 if len(elem):

14 sindent(elem,level+1)

15 eindent(elem,level)

16 for sube in elem:

17 indent(sube,level+1)

18 eindent(sube,level)

19 else:

20 eindent(elem,level)

The nested functions at lines 5-6 and 9-11 are responsible for inserting
indention and line breaks in text and tail fields. Their if statements ensure
that only white-space can be overwritten.

The test at line 13 determines if the current element is a branch node
with sub-elements, or a leaf. Lines 16 and 17 recursively calls the indent

function for each sub-element.
The function calls at lines 14 and 15 is apply indentation to branch nodes

(head recursion); and line 20 does it to leaf nodes (recursion end). So all sub-
elements get the the same text and tail indention. Unfortunately, this applies
the wrong value to the last sub-element’s tail field (!); but a correction
is performed at line 18 when the indent function returns to its caller (tail
recursion). When the for loop of lines 16 and 17 ends, the ‘target’ variable
sube still exists3, and is actually the last sub-element of the current branch
node. So sube is used in line 18 to replace the erroneous tail field value.

The above function given is similar to code given at Stack Overflow [1],
where it is stated that it is part of the Python 2.5 and later ElementTree

library; and at effbot.org [2], where it is suggested that the function may [sic]
be part of an ElementLib module. However, there is no evidence of such a
function in Python 3.5 code (!).

4 Deleting Attributes

The standard Python documentation does not mention a process for deleting
XML element attributes, but an element’s attributes can be obtained as a
Python dictionary. This dictionary can then be modified to remove a key, but

3This is standard python behaviour, although it it not allowed is some other program-
ming languages.

4

it is not clearly stated in the documentation that such a dictionary update
will result in an actual XML element tree change.

In practice (with Python 3.3) such a dictionary update works, and results
in an element update as required. The following code gives an example of
how this might be handled:

1 if myelement.get("akey1"):

2 del myelement.attrib["akey1"]

Python documentation advises that get and set should be be used in
preference to direct dictionary operations for accessing, adding or modifying
attributes.

References

[1] Pretty printing XML in Python, Stack Overflow, Answered by Ade,
2011. http://stackoverflow.com/questions/749796/
pretty-printing-xml-in-python

[2] Fredrik Lundh, Element Library Functions, effbot.org, 2004.
http://effbot.org/zone/element-lib.htm#prettyprint

5

