
CONCENTRATED C++

An Introduction to the Language

(2nd Edition)

Adrian P. Robson
The University of Northumbria at Newcastle

c©1994 A.P.Robson

June 1994

Contents

1 INTRODUCTION 1
1.1 Object Oriented Programming 1
1.2 History of C++ . 2
1.3 Influences . 3
1.4 C and C++ . 3
1.5 Overview . 3
1.6 Reading List . 4

2 THE BASICS 5
2.1 Example: Hello World . 5
2.2 Comments . 6
2.3 Names . 6
2.4 The fundamental types . 7

2.4.1 Integer numbers . 7
2.4.2 Real numbers . 7

2.5 Constants . 7
2.5.1 Integers . 7
2.5.2 Characters . 8
2.5.3 Real numbers . 8
2.5.4 Strings . 8
2.5.5 Enumerations . 9

2.6 The iostream . 9
2.6.1 Output . 9
2.6.2 Input . 9
2.6.3 Example: Print some constants 9

2.7 Data Objects . 10
2.7.1 Using data objects . 11
2.7.2 Scope and duration . 11
2.7.3 Example: Scope experiment 12

2.8 Operators and expressions . 13
2.8.1 Precedence and associativity 13
2.8.2 Arithmetic operators . 14
2.8.3 Assignment operators . 14
2.8.4 Increment and decrement operators 14
2.8.5 Relationship and Logic operators 15
2.8.6 The conditional expression 15
2.8.7 The comma operator . 16
2.8.8 Type conversions . 16

i

CONTENTS ii

2.8.9 Casts . 16
2.8.10 Side effects . 17

2.9 Control structures . 17
2.9.1 While statement . 17
2.9.2 Do statement . 17
2.9.3 For statement . 17
2.9.4 If statement . 18
2.9.5 Switch statement . 18

2.10 Example: Multiplication Table 19
2.11 Pointers . 20
2.12 Arrays . 20

2.12.1 Declaration . 20
2.12.2 Initialisers . 20
2.12.3 Access . 21
2.12.4 Pointers . 21

2.13 Strings . 21
2.13.1 Example: Strings . 22

2.14 Structures . 23
2.15 Named constants . 23
2.16 Reference Types . 24
2.17 Typedef Names . 25
2.18 Functions . 25

2.18.1 Declaring functions . 25
2.18.2 Defining functions . 25
2.18.3 Return statements . 26
2.18.4 Arguments . 26
2.18.5 Returning references . 27
2.18.6 Recursion . 27
2.18.7 Inline function . 27
2.18.8 Example: Functions . 28

2.19 Memory Management . 30
2.19.1 Creating objects . 30
2.19.2 Accessing objects . 30
2.19.3 Destroying objects . 31

3 CLASSES AND OBJECTS 32
3.1 Self referencing . 33
3.2 Initialisation . 34
3.3 Assignment . 35
3.4 Clean up . 35
3.5 Example: Stock Class . 35
3.6 Visibility . 38
3.7 Function overloading . 38
3.8 Friends . 39
3.9 Operator overloading . 39
3.10 Guide lines . 40
3.11 I/O operator overloads . 40
3.12 Example: A Vector Class . 40
3.13 Constant Objects and Functions 46
3.14 Inlining . 46

CONTENTS iii

3.15 Static members . 47
3.16 Nested Classes . 48
3.17 Classes with Pointer Data Members 49

3.17.1 Copy constructors . 50
3.17.2 Assignment operators . 50
3.17.3 Destructors . 51

3.18 Header files and Linkage . 51
3.18.1 Multiple inclusion . 54
3.18.2 Example: A String Class 54

4 INHERITANCE 60
4.1 Classes and Inheritance . 60
4.2 Single Inheritance . 60

4.2.1 Access to base class members 60
4.2.2 Declaring a derived class 61

4.3 Access to Base Classes . 63
4.4 Overloading inherited functions 64
4.5 Multiple Inheritance . 64
4.6 Initialisation . 66
4.7 Virtual Base Classes . 66
4.8 Design Style . 67

5 VIRTUAL FUNCTIONS 69
5.1 Polymorphism . 69
5.2 Assignment and Truncation . 69
5.3 Virtual Functions . 71
5.4 Abstract Base Classes . 72

6 TEMPLATES 74
6.1 A Simple Class Template . 74
6.2 A Simple Function Template . 75
6.3 Template Arguments . 75

7 MORE INPUT AND OUTPUT 76
7.1 Input and output operators . 76

7.1.1 Get and Put Functions . 77
7.1.2 Other useful Functions . 77

7.2 Format State Flags . 78
7.3 Parameters . 78
7.4 Setting Flags and Parameters . 79

7.4.1 Manipulators . 80
7.5 Detecting Errors and End of File 80
7.6 Named Files . 81

7.6.1 Opening and closing files 82
7.6.2 Reading and writing files 83

7.7 Command Line Parameters . 84

CONTENTS iv

A OBJECT ORIENTED DESIGN 85
A.1 The design process . 85
A.2 Classes in the design . 86
A.3 Objects in the design . 86
A.4 Design Steps . 86

A.4.1 Finding classes . 87
A.4.2 Specifying attributes . 87
A.4.3 Specifying dependencies 87
A.4.4 Specifying operations . 88
A.4.5 Specifying object connections 88

B STROUSTRUP’S RULES OF THUMB 90
B.1 While Learning C++ . 90
B.2 Design and Development . 91

B.2.1 Concepts . 91
B.2.2 Approach . 91

B.3 Design and C++ . 92

C OPERATOR SUMMARY 94

D C++ KEYWORDS 96

E Arithmetic Conversions 97
E.1 The usual arithmetic conversions 97
E.2 Integral promotions . 97

F C Library Functions 98
F.1 Functions by Type . 98

F.1.1 Type and Conversion Functions 98
F.1.2 Mathematical Functions 99
F.1.3 Miscellaneous Functions 100
F.1.4 Input/Output Functions 101
F.1.5 Memory Functions . 102
F.1.6 String Functions . 102
F.1.7 Date and Time Functions 102

F.2 Functions by Library . 103
F.2.1 ctype . 103
F.2.2 math . 103
F.2.3 signal . 103
F.2.4 stdarg . 104
F.2.5 stdio . 104
F.2.6 stdlib . 105
F.2.7 string . 105
F.2.8 time . 106

Chapter 1

INTRODUCTION

This is a basic introduction to Object Oriented Programming with C++. An
ability to design and write programs in a modern procedural language like Ada,
Modula-2 or Pascal is assumed. However, C experience is not required.

1.1 Object Oriented Programming

• Object oriented programming approaches the design of software by build-
ing a program from a number of objects that communicate by exchanging
messages.

This promotes high cohesion and low coupling.

• Objects are defined by classes. Any number of objects of a class can be
created.

• A class has a data part, data members in C++, and a set of messages,
member functions in C++.

• A Class defines a public interface for a object in the form of a set of
messages to which it will respond.

– The implementation of the class is hidden. An object’s user does not
have know about its internal working.

– This separation of interface and implementation is called abstraction.
Classes support abstract data types.

• New classes can be defined by inheriting the attributes of existing classes.

Inheritance makes it easier for a programmer to express commonality
among classes. It promotes code reuse.

• Object oriented programming supports a form of polymorphism.

This allows different objects to understand the same message, although
they may respond to it in different ways. We can send such a message to
an object without knowing its exact type.

1

CHAPTER 1. INTRODUCTION 2

• Classes that are defined with parameterised attributes are call generic
classes.

These are used as general purpose or utility classes. C++ has template
classes for this purpose.

• The features that identify an object oriented language are:

– Objects

– Classes

– Abstraction

– Inheritance

– Polymorphism and Generic Classes

• Stroustrup defines the object oriented programming paradigm as:

”Decide which classes you want; provide a full set of operations
for each class; make commonality explicit by using inheritance.”

• C++ is a hybrid OOL, smalltalk is a pure OOL

1.2 History of C++

• C++ was developed by Bjarne Stroustrup, who works for AT&T Bell
Telephone Laboratories.

• Originally implemented in 1982 as ”C with Classes”.

• Used by AT&T researchers in 1984.

• Distributed to Universities and throughout AT&T in early 1985.

• AT&T C++ translator 1.0 released to the public in late 1985.

• Commercial compilers began to appear in 1988, Zortec and GNU

• C++ moved into the mainstream of programming languages with Release
2.0 in June 1989

Major manufactures provide C++ products for their platforms. Borland
release a Turbo C++ Compiler.

• ANSI C++ Committee formed in late 1989.

They approved templates and exception handling.

• In late 1991 template implementations were provided by Borland and by
AT&T/USL Cfront Release 3.0. Others soon followed.

• At the moment (1993) no implementations supporting exception handling
are available.

CHAPTER 1. INTRODUCTION 3

1.3 Influences

The design of C++ was effected by many other computer languages:

• C provided the basic syntax and semantics for C++.

• Classes came from Simula67.

Simula’s lack of performance inspired Stroustrup to develop C++.

• Operator overloading and embedded declarations are features of Algol68.

• Ada and Clu influenced C++ templates.

• Ada, Clu and ML influenced the design of C++ exception handling.

• One explanation for the name C++ is that ++ is the C incremental op-
erator.

1.4 C and C++

C++ supports ANSI C (with minor exceptions).

• It is link compatible with the standard C libraries.

• Every program in Kernighan and Richie ”The C Programming Language,
2 Edition” will compile under C++.

1.5 Overview

This document is divided into a number of sections:

1. The basics:

This introduces the C++ language without classes. It purpose is to show
programmers with experience of a good procedural language, like Pascal,
how to write equivalent programs in C++.

2. Classes in C++:

This introduces the concept of classes. It shows how class objects can be
used to build programs.

3. Inheritance:

This extends the previous section by showing how inheritance can be used
to build rich class hierarchies. Single and multiple inheritance and some
aspects of C++ design style are considered.

4. Virtual Functions:

This looks at some of the more advanced aspects of C++ programming.
The concept of Polymorphism is introduced. Virtual functions and point-
ers to objects are presented as a method of supporting polymorphism in
C++.

CHAPTER 1. INTRODUCTION 4

5. Templates:

Generic classes and container classes are discussed. C++ templates are
introduced to support these concepts.

6. Input and Output:

The use of the C++ iostream has already been introduced. This section
provides much more detail and explains how named files can be used.

7. Object Oriented Design:

This reviews the object oriented ideas that have been introduced through-
out the course. It looks at how software can be designed in an object
oriented way, so that it can be easily implemented in a language like
C++.

8. Additional material:

A number of addition sections are provided for reference.

The examples in this document were compiled using a Borland C++ compiler.

1.6 Reading List

Graham, N., Learning C++, McGraw-Hill, 1991.

A very good, easy to read introductory book. It does not cover templates
or exceptions.

Winder, S., Developing C++ Software, 2nd Edition, Wiley, 1993.

A good introduction to C++ and object oriented programming. However,
its coverage of inheritance is complicated.

Stroustrup, B., The C++ Programming Language, 2nd Edition, Addison-
Wesley, 1991.

A rich, in depth introduction to C++. It contains the C++ reference
manual.

Lippman, S., A C++ Primer, 2nd Edition, Addison-Wesley, 1992.

An alternative introductory book. Stan Lippman works for AT&T and
wrote parts of their C++ compiler.

Ellis, M.A. and B. Stroustrup, The annotated C++ Reference Manual,
Addison-Wesley.

Very heavy reading but very comprehensive. Not an introductory text.

Booch, G., Object-Oriented Design with Applications, Benjamin-Cummings,
1991.

An excellent book on OOD. Good background reading.

Coad, P., and E. Yourdon, Object-Oriented Analysis 2nd Edition, Prentice-
Hall, 1991.

This book describes one version of OOA. Good background reading.

Chapter 2

THE BASICS

This section begins an introduction of the C++ language. Classes, which are
fundamental to C++ programs, are covered in the next section.

2.1 Example: Hello World

// File: hello.cpp
// Hello word program

#include <iostream.h>

main()
{

cout << "Hello World\n";
}

• The program is stored in a file called hello.cpp. The file type cpp is the
default for the Borland C++ compiler.

• The lines beginning with // are comments.

• The line

#include <iostream.h>

allows us to use the standard C++ terminal I/O library. #include is a
preprocessor directive.

• main() is a function.

– The system executes a C++ program by calling this function. All
C++ programs must have a function called main.
The empty parentheses () indicate that main takes no arguments.

– The braces { and } enclose a block.
A block is the basic unit for grouping declarations and statements.
The statements defining a function are always enclosed in a block.

5

CHAPTER 2. THE BASICS 6

• The line

cout << "Hello World\n";

is a statement. It writes

Hello World

on the terminal screen.

• "Hello World\n" is a string literal.

\n is an escape sequence. It causes the output to start on a new line.

• All statements must end with a semi-colon.

2.2 Comments

• Any text following //, until the end of the line is a comment.

• Comments can also be enclosed in /* */ like this:

// this is a comment line
a = b; // this is a comment at the end of a line

/* this is also
a
comment */

this is an error
a = b; so is this

2.3 Names

• Names (identifiers) in C++ consist of letters, digits and the underscore
character _.

• Names must begin with a letter or an underscore.

• C++ is case sensitive.

• All names must be declared before they can be used. A declaration asso-
ciates a name with a type:

int count = 0;
float range = 3.6;
char ans;
int max(int a, int b);

CHAPTER 2. THE BASICS 7

2.4 The fundamental types

2.4.1 Integer numbers

• Integers types, in increasing size, are:

char
short int or short
int
long int or long

• Signed and unsigned integers:

– All the integer types can also be signed or unsigned. For example,
unsigned short int.

– Unsigned integers cannot represent negative numbers but they can
represent double the number of positive values.

– The signed int types are synonyms for their plain versions, so
signed int is the same as int.

• The normal integer type for arithmetic is int.

• The char type is used for storing single characters.

The character types char, unsigned char and signed char are distinct.

• In general, the size of an integer type is implementation dependent.

The compiler’s file limits.h contains information about the minimum
and maximum values that can be stored.

2.4.2 Real numbers

• The varieties of real numbers, in order of increasing precision, are:

float
double
long double

2.5 Constants

2.5.1 Integers

• Integer constants are written like this:

1249234 99 0 345U 16777215L 45UL 0XFF 010

Commas are not allowed.

Decimal, hexadecimal or octal notation can be used. The number twelve
can be written as 12, 0XC or 014.

A decimal number must not begin with a zero.

CHAPTER 2. THE BASICS 8

• The type of an integer constant depends on its form, value, and suffix.
The most compact internal representation is used. Thus, the type of a
constant is chosen in the following order.

A decimal with no suffix: int, long int then unsigned long int.

An octal or hexadecimal with no suffix: int, unsigned int, long
int then unsigned long int.

Suffixed by U: unsigned int then unsigned long int.

Suffixed by L: long int then unsigned long int.

Suffixed by UL or LU: It is unsigned long int.

2.5.2 Characters

• The character types are:

char
unsigned char

• Character constants are written like this:

’a’ ’D’ ’’ ’\n’ ’\xaa’ ’"’

• Escape sequences can be used to specify single characters:

new line \n
horizontal tab \t
backspace \b
carriage return \r
alert (bell) \a
form feed \f
back slash \\
single quote \’
double quote \"
hex number \xhh

2.5.3 Real numbers

• Real or floating point constants are written as follows:

3.127 .001 5.6E3 2e5L 4e-10F

An F suffix indicates a float and L a long double. The type is double
if no suffix is given.

2.5.4 Strings

• String literals are sequences of characters in double quotes:

"This is a string literal. It will sound the bell \a"

CHAPTER 2. THE BASICS 9

2.5.5 Enumerations

• Enumerations are integral types with named constants:

enum Grade { GOOD, AVERAGE, POOR };

The name GOOD represents the value 0, AVERAGE represents 1 and POOR
represents 2.

Conventional C++ style is to use capitals for the names of constants.

• They can be given specific values:

enum Grade { GOOD = 100, AVERAGE = 50, POOR = 0 };

• Enumerated type values are converted to type int before any operations
are carried out on them.

2.6 The iostream

2.6.1 Output

• Use the << operator with cout:

cout << xxx;

• Useful manipulators:

oct convert to octal
dec convert to decimal
hex convert to hexadecimal
endl add \n and flush
ends add \0 and flush
flush flush stream
setw(int w) set output field width

Remember to include <iomanip.h> if setw is used.

2.6.2 Input

• Use the >> operator with cin:

cin >> xxx;

• Useful manipulators:

eatwhite eat white space
setw(int w) limit input field width

White space is a blank, tab, new line, form feed or carriage return.

Remember to include <iomanip.h> if —setw— is used.

2.6.3 Example: Print some constants

// File: contest.cpp
// Experiment with C++ constants

#include <iostream.h>

CHAPTER 2. THE BASICS 10

enum Grade { GOOD, AVERAGE, POOR };

main()
{

cout << "I said \"Lets look at some constants\".\n";
cout << "This is a two line string\nSecond line\n";
cout << "But this is " "all on the same line\n";
cout << "Some integers are " << 0xff << ", "

<< -1 << ", " << -1U << " and "
<< hex << -1U << ’\n’;

cout << "Some characters are " << ’\x61’
<< " = " << ’a’ << ’\n’;

cout << "Now some floating point values\n"
<< 2.5 << ’ ’ << 0.25E10 << ’ ’ << 9E20 << ’ ’
<< 123456789.0 << endl;

cout << "Grades are " << GOOD << ’ ’
<< AVERAGE << ’ ’<< POOR << endl;

char answer;
cout << "Give yes(y) or no(n): ";
cin >> answer;
cout << "You said " << answer;

}

This program produces the following output:

I said "Lets look at some constants".
This is a two line string
Second line
But this is all on the same line
Some integers are 255, -1, 65535 and ffff
Some characters are a = a
Now some floating point values
2.5 2.5e+09 9e+20 1.234567e+08
Grades are 0 1 2
Give yes(y) or no(n): X
You said X

2.7 Data Objects

• A data object is an area in memory where information is stored. It is a
variable.

– A variable has an address which is its location in memory. Addresses
can be stored and manipulated in pointers.

– A variable can have zero, one or more names.
– A variable has a type which says how big it is and how its internal

bit pattern is interpreted.
– A variable has a value.

CHAPTER 2. THE BASICS 11

2.7.1 Using data objects

• An variable must be declared before it can be used:

int count;
float total_value;
int x, y, z;

• They can be initialised when they are declared:

int count = 0;
float init_value = 3.4;

• Variables can be assigned values at run time:

count = 6;

• variables are modified via an lvalue.

An lvalue is an expression that references an object’s location (rather than
just its value).

The term lvalue was originally coined to mean something that can be on
the left-hand side of an assignment.

• Variables can also be used on the right side of an assignment; where their
values are used to compute the value to be assigned:

count = a + b;

2.7.2 Scope and duration

• An object can only be used after it has been declared.

• Objects declared outside any block are global. They have file scope.

• An object declared inside a block is local. Its not available outside the
block.

• Blocks and thus scopes can be nested.

• Names can be overridden inside blocks.

The :: operator can be used to reference a global object with the same
name as a local object. (See the example below.)

• The duration of an object is normally the same as its scope.

It is destroyed when it can no longer be accessed:

– Unless it is declared as static.
It is still only accessible from within the block, but it is not destroyed
when the block is finished.
When the block is re-entered it is still available.
It is initialised once, when it is created.

CHAPTER 2. THE BASICS 12

– Unless it is declared using new (more about this later).
By default objects are destroyed when they go out of scope. This
kind of object is called automatic.

• A global or local static object that is not explicitly initialised is implicitly
initialised to zero.

Automatic objects must be explicitly initialised.

2.7.3 Example: Scope experiment

// File : scopetst.cpp
// Experiment with C++ scope and duration rules

#include <iostream.h>

int x = 1; // Global x - file scope

int give_x() // A function
{

return x;
}

main()
{

cout << "A -> x is " << x << endl;
cout << "B -> x from give_x is " << give_x() << endl;
int x = 2;
cout << "C -> x is " << x << endl;
cout << "D -> x from give_x is " << give_x()

<< endl;
{

int x = 3;
cout << "E -> x is " << x << endl;
cout << "F -> ::x is " << ::x << endl;

}
cout << "G -> x is " << x << endl;
for (int i = 0; i < 3; i++) // loop 3 times
{

int x = 0;
cout << "H -> automatic x in loop is "

<< x++ << endl;
static int y;
cout << "I -> static y in loop is "

<< y++ << endl;
}

}

This program has the following output:

A -> x is 1

CHAPTER 2. THE BASICS 13

B -> x from give_x is 1
C -> x is 2
D -> x from give_x is 1
E -> x is 3
F -> ::x is 1
G -> x is 2
H -> automatic x in loop is 0
I -> static y in loop is 0
H -> automatic x in loop is 0
I -> static y in loop is 1
H -> automatic x in loop is 0
I -> static y in loop is 2

2.8 Operators and expressions

An expression is a sequence of operators and operands that specifies a compu-
tation.

2.8.1 Precedence and associativity

• 3 * 4 + 3

The operator * has a higher precedence than +, so the grouping is

(3 * 4) + 4

• 3 - 4 + 5

The operators + and - have the same precedence and have left-to-right
associativity, so this groups as follows:

(3 - 4) + 5

• a = b = c

The = operator has right-to-left associativity, so this groups like this:

a = (b = c)

• Precedence and associativity can normally be modified with parentheses,
so:

(3 + 4) * 5 has the value 35, but (a = b) = c is an error because
(a = b) is not an lvalue.

Use parenthesis to make expressions easy to understand.

• Precedence and associativity determine the grouping of operator with
operands. The order of calculation is not defined.

The expression a * b + c * d groups (a * b) + (c * d) but we cannot
predict if a * b or c * d will be calculated first.

CHAPTER 2. THE BASICS 14

2.8.2 Arithmetic operators

+ addition
- subtraction
* multiplication
/ integer division, quotient

floating point division
% integer division, remainder (modulus)

The operation of +, - and * are obvious, but

7 / 2 gives 3
7 % 2 gives 1
7.0 / 2.0 gives 3.5
7.0 / 2 gives 3.5 (promotion)
7.0 % 2 is an error

2.8.3 Assignment operators

• x = 6 is an expression. It has a value and can be used like this:

cout << (x = 6);

assigns the value 6 to x and prints 6.

Without the parentheses the statement would group (cout << x) = 6
which is invalid.

• Expressions of the form x = x + 6 are common. C++ provides an ab-
breviated form for this type of statement:

a += b is the same as a = a + b
a -= b is the same as a = a - b
a *= b is the same as a = a * b
a /= b is the same as a = a / b
a %= b is the same as a = a % b

These expressions also have values, so n = m *= 3 id valid.

There are also bit-wise assignment operators, which have a similar form.

2.8.4 Increment and decrement operators

• n = n - 1 and n = n + 1 are very common expressions, so C++ provides
the special operators ++ and --.

• ++n increments n and gives the incremented value. n++ gives the value of
n and has the side effect of incrementing n.

a = n++ is the same as a = n; n = n + 1;
a = ++n is the same as n = n + 1; a = n;
a = n-- is the same as a = n; n = n - 1;
a = --n is the same as n = n - 1; a = n;

CHAPTER 2. THE BASICS 15

2.8.5 Relationship and Logic operators

• C++ does not have a Boolean type.

The integer value 0 represents false. Any non-zero integer value represents
true.

The expression n - n evaluates to false, while 3 * 6 is always true.

• The equivalence operator is ==

7 == 7 yield true (i.e. 1)
3 == 7 yields false (i.e. 0)

Take care. A very common mistake, which the C++ compiler may not
catch, is using = instead of ==.

• The other relation operators are:

!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

• Relational expressions can be combined with the logical operators:

! NOT
|| OR
&& AND

For example, n == 1 || m > 6

Parentheses are not required because || has a lower precedence than ==
or >. However, use them for clarity, like this (n == 1) || (m > 6).

The left operand of || or && is always evaluated first. The right hand
operand is not evaluated unless is has to be.

The expression 1 || n is always true and n is not evaluated. The expres-
sion 0 && n is always false and n is not evaluated.

Take care. The symbols | and & are valid C++ operators. They are
bitwise OR and bitwise AND respectively.

2.8.6 The conditional expression

• This has the form

expression-c ? expression-t : expression-f

Expression-c is always evaluated first. If the condition represented by
this is true then the whole expression has the value of expression-t,
otherwise it has the value of expression-f.

CHAPTER 2. THE BASICS 16

2.8.7 The comma operator

• This is an obscure operator (!).

• A pair of expressions separated by a comma are evaluated left to right and
the value of the left expression is discarded.

The type and value of the result are those of the right operand.

All side effects of the left expression are applied before the right operand
is evaluated.

• In the context where comma has a special meaning, such as lists of ac-
tual arguments to a function, the comma operator can only appear in
parentheses.

In f(a,(t=3,t+2),c) the second argument is 5. This also assigns the
value 3 to t.

• A more useful example is

for (i = 0, j = 4; i < 10; i++, j++)
....;

This varies i from 0 to 9 while j goes from 4 to 13.

Parentheses are not required because comma has the lowest precedence.

2.8.8 Type conversions

• C++ allows mixed mode expressions such as 2 + 3.5

Both operands must be the same type for computation, so one is promoted.

• The full rules are complex, but generally char, short int and enum are
converted to int.

Then one operand is promoted through int to unsigned int to long to
unsigned long to float to double to long double until it matches the
other operand.

• Conversions are performed if needed during initialisation.

2.8.9 Casts

• Type conversions can be explicit

(double)7/3 or double(7)/3 gives 2.5

Take care. Casts can produce garbage, for example char(1000). They
can be used thoughtlessly to by-pass C++ type restrictions. Do not use
casts if they can be avoided.

CHAPTER 2. THE BASICS 17

2.8.10 Side effects

• C++ expressions can have useful side effects,

i = n++ has the side effect that n is incremented.

The = operator has a side effect. Its left hand operand is modified.

• The vague ordering of operations in C++ expressions can cause problems:

We cannot predict the value of i after ++i + i or i = 6 + i++

We do not know the argument values in f(--i,i++)

There is some help. All side effects are guarantied to happen:

– At the end of statements.

– At comma, ||, && and ?: operators. The left most expression is
evaluated first.

– Before arguments are passed to functions. However, the order of
evaluation of arguments is not defined.

2.9 Control structures

2.9.1 While statement

while (expression) statement;

int i = 1;
while (i <= 5) {

cout << i << endl;
i++;

}

2.9.2 Do statement

do statement while (expression);

int i = 1;
do {

cout << i << endl;
i++

} while (i <= 5);

2.9.3 For statement

for (statement-i expression-c; expression-s)
statement;

This is equivalent to:

CHAPTER 2. THE BASICS 18

statement-i;
while (expression-c) {

statement;
expression-s;

}

for (int i = 1; i <= 5; i++)
cout << i << endl;

Parts of the for statement cam be omitted. For example, for (;;); loops
forever.

2.9.4 If statement

if (expression) statement;
if (expression) statement-1 else statement-2;

if (amount > 10) {
cout << "Too many items for one delivery\n";
amount = 10;

}
else

cout << amount << " items will be delivered\n";

In nested if statements, an else is connected with the last encountered
else-less if. Use { } to override this relationship.

2.9.5 Switch statement

switch (expression) statement;
case constant-expression : statement;
break;
default : statement;

switch (ans) {
case ’y’:
case ’Y’:

cout << "Resetting totals\n";
stock_total = 0;
break;

case ’n’:
case ’N’:

cout << "Totals not modified\n";
break;

default:
cout << "Invalid reply. Please try again\n";

}

CHAPTER 2. THE BASICS 19

2.10 Example: Multiplication Table

//file contr.cpp
// demonstrate some C++ control structures

#include <iostream.h>
#include <iomanip.h>

enum Boolean { FALSE, TRUE };
const int TOP = 12;

main()
{

cout << "\nTables Print Program\n";
cout << "--------------------\n\n";

Boolean more = TRUE;
while (more) {

int table;
Boolean good_ans;
do {

cout << "Give required table (2 to 12): ";
cin >> table;
if (table >= 2 && table <= 12)

good_ans = TRUE;
else {

cout << "Table must be in range 2 to 12, "
"please try again\n";

good_ans = FALSE;
}

} while (!good_ans);
cout << endl;
for (int i = 1; i <= TOP; i++) {

cout << table << " x " << setw(2) << i
<< " = " << table * i << endl;

}
char ans;
cout << "\nAnother table (y or n) ";
cin >> ans;
switch (ans) {
case ’Y’:
case ’y’:

more = TRUE;
break;

case ’N’:
case ’n’:

more = FALSE;
}

}
}

CHAPTER 2. THE BASICS 20

2.11 Pointers

• A pointer is the address of an object of a specific type:

int* p; // p is a pointer to int

Take care. In the declaration int* p, r r is an integer, NOT a pointer
to int.

• The address-of operator is &. When & is applied to an lvalue it yields a
pointer:

float a;
int i;
int *p;
p =&i;
p = &a; // error p is not a pointer to float

• The object addressed by a pointer is accessed by dereferencing the pointer:

int m = 0;
int *p = &m;
*p += 6; // add 6 to m

• Arithmetic can be performed on pointers (See the section on arrays for an
example.)

2.12 Arrays

2.12.1 Declaration

• An array in C++ is declared like this:

int a[5];

This is an array of five integers.

2.12.2 Initialisers

• Array can have initialisers:

int total[5] = { 3, 5, 2, 5, 8 };

• If the initialiser has too few items to fill the array, zeros are added.

int total[5] = { 23, 65 };

is the same as

int total[5] = { 23, 65, 0, 0, 0 };

• The size of the array can be omitted if an initialiser is used.

int total[] = { 3, 5, 2, 5, 8 };

declares an array of five integers

CHAPTER 2. THE BASICS 21

2.12.3 Access

• The elements of an array are accessed using subscripts.

total[3] += 7; // add 7 to the 4th
// element of total

• The first element is total[0].

• The last element is total[4] if the array has 5 elements.

• Take care. You can read and write off the end of an array. This can
damage data or even crash the program, including the development tool.
(The author has been hit by this one.)

2.12.4 Pointers

• An array variable is actually a pointer.

The name of an array can be dereferenced as a pointer variable:

main()
{

int array[] = { 1, 2, 3, 4, 5 };
int i;

for (i = 0; i < 5; i++)
cout << array[i] << ’ ’;

cout << endl;

int* array_point = array; // <- address of array

for (i = 0; i < 5; i++) {
cout << *array_point << ’ ’;
array_point++;

}
cout << endl;

array++; // ERROR - An array variable is CONST

}

2.13 Strings

• A string is an array of characters. Its end is indicated by a null character
which is ’\0’.

char dog[5] = "Cleo";

is the same as

char dog[5] = { ’C’, ’l’, ’e’, ’o’, ’\0’ };

CHAPTER 2. THE BASICS 22

• The array must be at least one character longer than the longest string it
will have to store.

• There is a string library that offers a number of string functions. To use
it include <string.h>.

2.13.1 Example: Strings

// file string1.cpp
// demonstrate strings

#include <iostream.h>
#include <string.h>

main()
{

char dog1[10] = "Cleo";
char dog2[10] = "Penny";
char dog4[] = "Brollie";
char dog3[10];

// dog3 = dog2; ERROR - can’t assign a string to dog3

// Copy string
int i = 0;
while (dog2[i] != ’\0’) {

dog3[i] = dog2[i];
i++;

}
dog3[i] = ’\0’;

cout << "dog 3 is " << dog3 << endl;

// A more compact method
char* s1 = dog3;
const char* s2 = dog1;
while (*s1++ = *s2++);

cout << "dog 3 is " << dog3 << endl;

// Use string library function
strcpy(dog3,dog4);

cout << "dog 3 is " << dog3 << endl;

// OUCH!!! The following prints "should Xe goodbye"
// with a Borland C++ compiler !!!!!

char* se1 = "goodbye";

CHAPTER 2. THE BASICS 23

se1[14] = ’X’;
cout << "should be goodbye " << endl;

}

2.14 Structures

• Many languages offer a record type. In C++ this is called a structure.

• In an array all the elements are the same type. In a structure the element
(or members) can be of different types:

struct dog {
char name[20];
char sex;
char breed[20];

};

• This structure can be declared and accessed as follows:

dog my_dog;
my_dog.sex = ’F’;
my_dog.name = "Cleo";

• They can be intialised like arrays:

dog my_dog = { "Cleo", ’F’, "Alsatian" };

• The members of a structure can be accessed through pointers:

dog* p = &my_dog;
cout << "my dogs name is " << p->name << endl;

• structures are not very important in C++. Classes are much more useful.
A structure is just a public access class (more about this later).

• C++ also provides unions which are similar to variant records in Pascal.
However, these are not described in this report.

2.15 Named constants

• The keyword const can be added to the declaration of an object to make
it a constant rather than a variable.

const int LIMIT = 10;
LIMIT = 20; // error
LIMIT++; // error
int i = LIMIT; // ok

• It can be used with pointers:

CHAPTER 2. THE BASICS 24

const char* cs = "abc"; // pointer to constant
cs[2] = ’x’; // error
cs = "xyz"; // ok
cs++; // ok
char a = cs[0]; // ok

and ...

char *const cs = "abc"; // constant pointer
cs[2] = ’x’; // ok
cs = "xyz"; // error
cs++; // error
char a = cs[0]; // ok

and ...

const char *const cs = "abc"; // both constant
cs[2] = ’x’; // error
cs = "xyz"; // error
cs++; // error
char a = cs[0]; // ok

• Access thorough pointers to constants is restricted:

int a = 1;
const int b = 2;
const int* p1 = &a; // ok
const int* p2 = &b; // ok
int* p3 = &a; // ok
int* p4 = &b; // error
*p4 = 6; // can’t be allowed

2.16 Reference Types

• A reference is an alternative name for an object.

• A reference type is specified by putting & after a type, X& means reference
to X.

int i = 2;
int& r = i; // r and i refer to same variable
int j = r; // j= 2
r = 6; // i = 6

• A reference must be initialised to an lvalue but a constant reference can
be initialised to a constant:

int& i = 2; // error
const int& j = 2; // ok

• Reference types are most useful for function values and arguments.

CHAPTER 2. THE BASICS 25

2.17 Typedef Names

• The keyword typedef can be used to define alternative names for types:

typedef char* string;

string a;
// is the same as
char* a;

string a, b, c;
// is the same as
char *a, *b, *c;

• Typedef names are synonyms for types.

• Useful for introducing meaningful names.

• Used in libraries to improve portability.

2.18 Functions

2.18.1 Declaring functions

• A function must be declared before it can be called.

A function declaration gives the function’s name, its return type and the
number and type of its arguments.

double max(double a, double b);

• The argument names in a declaration are ignored by the compiler. They
can be omitted but it is best not to. They are useful for documentation.

2.18.2 Defining functions

• A function is defined by giving it a body

double max(double a, double b)
{

if (a > b)
return a;

else
return b;

}

• The function max might be called like this

cout << max(v,val);

CHAPTER 2. THE BASICS 26

2.18.3 Return statements

• A function must finish (exit) with a return statement which supplies a
value of the correct type.

• A function can be declared as void:

void print_amount(int amount);

In which case it should not contain a return statement.

2.18.4 Arguments

• Arguments can be specified for input or output:

void silly(int argin, int& argout)
{

argin++;
argout++;

}

When silly is called argin will not be modified but argout will be
incremented.

We say that argin is passed by value and that argout is passed by refer-
ence.

• It can be more efficient to pass a large object by reference rather than by
value, even if it will not be changed:

void silly(const big_thing& arg1)
{

// arg1 cannot be modified
}

• Arrays can be passed as arguments:

void copy_string(const char sin[], char sout[]);

The size of an array argument is not available in the called function (strings
are zero terminated).

Take care. The compiler will only complain if the actual argument for
sout is not a pointer to character. A string of any length can be written
to sout, with probably disastrous results.

• Default arguments can be specified:

double percent(double val, double pcent = 1.0);

Can be called with

amount = percent(50); // amount is 0.5
amount = percent(50,50) // amount is 25

Default arguments must be at the end of the argument list.

• A function does not have to have arguments:

CHAPTER 2. THE BASICS 27

int empty();
...
if (empty())

...;

2.18.5 Returning references

• Functions can return references or pointers:

int& max(int& a, int& b)
{

if (a > b)
return a;

else
return b;

}

This could be used like this:

// get the value of the largest
int c = max(a,b);
// replace the larger of a or b with 99 !!!
max(a,b) = 99;

• More efficient than return by value.

• Function can be on left hand side of assignment.

• Useful for operator overloading (more later).

Take care. Do not return a reference to a local variable. It will not be
there after the call.

2.18.6 Recursion

Functions can be recursive:

int factorial(int i)
{

return n == 0 ? 1 : n * factorial(n - 1);
}

2.18.7 Inline function

Functions can be declared to be inline:
inline double max (double a, double b);
This is a just a hint to the compiler. You should be warned if the compiler

cannot inline the function.

CHAPTER 2. THE BASICS 28

2.18.8 Example: Functions

// file funct1.cpp
// Demonstrate functions

#include <iostream.h>

const int MAX_DOGS = 4;
char dogs[MAX_DOGS] [10] = { "Cleo",

"Penny",
"Brollie" };

int print_all_dogs();
// Print the names of all dogs
// return the number of dogs

void add_dog(const char* dog, int& done);
// Add a dog
// done is 0 if no room, +ve if OK

int is_a_dog(const char* dog);
// Check if a dog exists

void copy_string(const char* in_string,
char* out_string);

// String copy a to b

int comp_string(const char* a, const char* b);
// String compare
// return 0 if a = b,

+ve if a precedes b, and -ve if b precedes a

int factorial(int n);
// Calculate n!

main()
{

cout << "The dogs are ";
int dog_count = print_all_dogs();
cout << endl << " and there are "

<< dog_count << " of them.\n";

int ok;
add_dog("Moss",ok);
if (ok) {

print_all_dogs();
cout << endl;

}
else

CHAPTER 2. THE BASICS 29

cout << "no room for dog\n";
add_dog("Fido",ok);
if (ok) {

cout << "dont expect this!!!!!\n";
}
else

cout << "no room for dog\n";
if (is_a_dog("Cleo"))

cout << "Cleo is a dog\n";
else

cout << "Cleo is not a dog !!!\n";
if (is_a_dog("Ann"))

cout << "Ann is a dog !!!\n";
else

cout << "Ann is not a dog \n";

// Test a recursive function
cout << "factorial 0 is " << factorial(0) << endl

<< "factorial 6 is " << factorial(6) << endl;

} // end main

int print_all_dogs()
{

int dcount = 0;
for (int i = 0; i < MAX_DOGS; i++)

if (dogs[i][0] != ’\0’) {
cout << dogs[i] << ’ ’;
dcount++;

}
return dcount;

}

void add_dog(const char* dog, int& done)
{

int i = 0;
while (dogs[i][0] != ’\0’ && i < MAX_DOGS)
i++;

if (i < MAX_DOGS) {
copy_string(dog,dogs[i]);
done = 1;

}
else

done = 0;
}

int is_a_dog(const char* dog)
{

if (comp_string(dog,"") == 0)

CHAPTER 2. THE BASICS 30

return 0;
else {

int i = 0;
while (comp_string(dog,dogs[i]) != 0 &&

i < MAX_DOGS)
i++;

return (i < MAX_DOGS);
}

}

void copy_string(const char * in_string,
char* out_string)

{
while ((*out_string++ = *in_string++) != 0);
// != avoids compiler warning

}

int comp_string(const char* a, const char* b)
{

while (*a == *b) {
if (*a == ’\0’)

return 0;
a++;
b++;

}
return *a - *b; // subtract char values

}

int factorial(int n)
{

return n==0 ? 1 : n * factorial(n - 1);
}

2.19 Memory Management

2.19.1 Creating objects

• Objects can be dynamically created with new:

int* p = new int;

This creates an integer object with p as its pointer.

• An object created with new is said to be on the free store.

2.19.2 Accessing objects

• Values can be assigned to the object by dereferencing the pointer:

*p = 100;
cout << *p;

CHAPTER 2. THE BASICS 31

• If the object is a structure (or a class) the -> operator can be used to
access a member:

dog* mydog = new dog;
mydog->name = "Penny";

2.19.3 Destroying objects

• An object created with new exists until it is destroyed by delete. Then
the space it occupied can be used by another new.

delete p;
delete mydog;

• The delete operator can only be applied to pointers created with new or
to zero. Applying delete to zero has no effect.

• A pointer to constant cannot be deleted.

• To destroy an array use delete []

int* p = new int[20];
// use the array like this
p[2] = 4;
// and destroy it like this
delete [] p;

– A destructor, if it is defined for class objects in the array, will be
invoked for each element.

– Older C++ compilers do not support this notation:
The number of elements has to be given explicitly:

stringX* table = new stringX[10];
// bla bla
delete [10] table;

– Do not use delete [] on non-array objects. Do not use delete on
array objects.

• An out of memory condition can be handled using the system variable
_new_handler.

Details of how to use this can be found in Graham, N., Learning C++,
on page 153 and in listing 3-3 on page 151.

This function-call mechanism is replace by exception handling in the latest
version of C++.

• Take care. Do not use a deleted object. The effect of this is undefined.

• Take care. There is no garbage collection. Destroying the pointers to
an object will not destroy the object on free store. This causes memory
leakage.

Chapter 3

CLASSES AND OBJECTS

• A class in a program represents the fundamental concepts of the appli-
cation and in particular the fundamental concepts of the reality being
modelled.

• In C++ a class is a type.

• A class consists of:

A state a collection of data members.

An interface a collection of member functions.

A specifier a name.

Data Hiding levels of program access to data. Also called encapsulation.

Normally the state is private and the interface is public.

• A stock item might be modelled by:

class stock {
int in_stock; // private by default
int reorder_level; // private by default
double unit_cost; // private by default

public:
void set_stock(int s);
void set_value(double v);
void set_reorder(int r)
double total_value();
int reorder();
int out_of_stock();
int remove(int amount);
int add(int amount);
void print();

};

• A class object is declared like any other object:

32

CHAPTER 3. CLASSES AND OBJECTS 33

stock widget;
stock* wp = &widget;

• The public members of a class object can be used like this:

widget.set_stock(25);
if (widget.reorder())

cout << "reorder NOW!";
cout << "total values is " << widget.total_value();
delivered = widget.remove(25);
int newstock = wp->add(5);
double value = widget.unit_cost; // error !!

– Class members are private by default. They cannot be accessed out-
side the class.

– Data members are normally private. Member functions are normally
public.

– Structures (and unions) are just classes with public default access.

• Once a class has been declared an object of that type can defined and
referenced.

However, before the program can run the class’s member functions must
be defined:

double widget::total_value()
{

return in_stock * unit_cost;
}

– Function definitions are associated with their class by using the class
name with the scope operator.

– Member functions have full access to data members in their class.
– Alternatively, they can be defined in the class declaration like this:

double total_value() { return in_stock * unit_cost; }

This is an inline function, but more about this later.

3.1 Self referencing

• A member function can reference the private members of its object. This
is called self referencing.

• A member function has a hidden first argument that points to the object.
It is implicitly declared as:

X *const this;

It is not normally used. Why write this->unit_cost when unit_cost is
all that is needed?

However, it is used when a reference to the object has to be returned from
a function, like this:

return *this;

CHAPTER 3. CLASSES AND OBJECTS 34

3.2 Initialisation

• The stock class discussed above is not automatically initialised. The func-
tions set_stock, etc have to explicitly called.

• Special functions called constructors can be declared to automatically ini-
tialise an object

These have the same name as their class and do not have a return type:

class stock {
int in_stock;
int reorder_level;
double unit_cost;

public:
stock();
stock(double unit_cost, int reorder = -1);
double total_value();
int reorder();
int out_of_stock();
int remove(int amount);
int add(int amount);
void print();

};

• Constructors have to be defined like other member functions:

stock::stock()
{

in_stock = 0;
reorder_level = -1;
unit_cost = 0;

}

The constructor stock has been overloaded. The version called is deter-
mined by the number, type and order of the arguments.

• The relevant constructor is used when a stock object is initialised:

// stock() used...
stock widget1;
// stock(double, int) used...
stock widget2 = stock(1.50,10);
// An abbreviated syntax can be used...
stock widget2(1.50,10);
// This syntax can be used when there is only one
// argument...
stock widget4 = 2.33;

CHAPTER 3. CLASSES AND OBJECTS 35

3.3 Assignment

• When one object is assigned to another, a memberwise copy is performed.

This can cause problems when the class contains pointer data members
(more later).

• Constructors can be used as normal functions to assign values to objects:

stock s1, s2, s3;
s1 = stock(34.54,10)
s3 = stock();
s4 = 5.5; // stock(5.5,-1) used
s5 = s4; // memberwise copy

3.4 Clean up

• When an object goes out of scope a destructor is called to release storage.

• An explicit destructor function can be declared for a class:

~stock();

It can have no arguments or a return type. only one destructor per class
is allowed.

• Explicit destructors are useful when pointers are used (so stock does not
have one).

3.5 Example: Stock Class

// File: stock2.cpp
// Using the stock class

#include <iostream.h>

class stock {
int in_stock;
int reorder_level;
double unit_cost;

public:
stock();
stock(double unit_cost, int reorder = -1);
double total_value();
int reorder();
int out_of_stock();
int remove(int amount);
int add(int amount);
void print();

};

stock::stock()

CHAPTER 3. CLASSES AND OBJECTS 36

{
in_stock = 0;
reorder_level = -1; // dont reorder
unit_cost = 0.0;

}

stock::stock(double unit_cost, int reorder)
{

in_stock = 0;
reorder_level = reorder;
stock::unit_cost = unit_cost;

}

double stock::total_value()
// Calculate stock value
{

return unit_cost * in_stock;
}

int stock::reorder()
// Check reorder
// return 0 (false) if reorder not required
// return 1 (true) if reorder required
{

if (in_stock <= reorder_level)
return 1;

else
return 0;

}

int stock::out_of_stock()
// Check if out of stock
// return 0 (false) if stock left
// return 1 (true) if out of stock
{

if (in_stock == 0)
return 1;

else
return 0;

}

int stock::remove(int amount)
// Attempt to remove amount of stock
// return amount actually removed
// in_stock can never be less than 0
{

if (amount > in_stock) {
int temp = in_stock;
in_stock = 0;
return temp;

CHAPTER 3. CLASSES AND OBJECTS 37

}
else {
in_stock -= amount;
return amount;

}
}

int stock::add(int amount)
// Add to stock
// return new stock level
{

in_stock += amount;
return in_stock;

}

void stock::print()
// Print stock object
{

cout << in_stock << ’[’ << reorder_level << ’]’
<< ’@’ << unit_cost;

}

main()
{

stock widget1(5.50,30);
stock widget2 = 3.50;
int delivery;

if (widget1.out_of_stock())
cout << "New widget1 stock is "

<< widget1.add(20) << endl;
if (widget1.reorder())

cout << "Order more number 1 widgets now\n";
else

cout << "Stock level number 1 widgets OK\n";
if (widget2.reorder())

cout << "Order more number 2 widgets now\n";
else

cout << "Stock level number 2 widgets OK\n";
cout << "The value of widgits in stock is "

<< widget1.total_value() +
widget2.total_value() << endl;

delivery = widget1.remove(25);
cout << delivery << " number 1 widgits removed"

" from stock for delivery\n";
cout << "Widget1 status is "; widget1.print();
cout << endl;

}

CHAPTER 3. CLASSES AND OBJECTS 38

3.6 Visibility

• Members can be declared as:

private Name can only be used by member functions and friends of the
class in which they are declared.

protected Name can only be used by member functions and friends plus
member functions and friends of derived classes.

public Name can be used by any function.

More about friends, derived classes and protected access later.

• As long as the public and protected parts of a class remain unchanged
its implementation can be changed without effecting the way the class is
used. Its interface is constant. However, the constructors may have to be
enhanced.

”Designing a class takes more time than just providing a data
structure and a set of separate functions. However, this effort
should be more than recovered during later design, implemen-
tation and testing.” Stroustrup

3.7 Function overloading

• Functions declared with the same name, in the same scope, are overloaded.

Functions with the same name in different classes are not overloaded.

• The actual function called is determined by the type, number and order
of the functions’ arguments. The compiler matches actual and formal
arguments.

A function’s return type does not contribute to its signature.

double power(double, int); // overloaded
double power(double, double); // overloaded
int power(double, int); // compile time error

• The detailed rules for matching are very complex but the following sim-
plified rules will do in most cases. They are applied in the given order:

Exact match: The type of the argument exactly match one of the alter-
natives

Standard conversions: The standard conversions are applied to achieve
a match.

User defined conversions: User defined conversions are applied to ach-
ieve a match. User defined conversions are constructors taking one
argument, and conversion operators (more later).

When there are more than one argument, an intersection rule is applied:

A set of ”best” matching functions for each argument is found and the
intersection of these sets is considered:

CHAPTER 3. CLASSES AND OBJECTS 39

– If the intersection is empty this implies a no match error.

– If the intersection contains more than one function this implies an
ambiguity error.

3.8 Friends

• A friend is a non-member function that is allowed to access the private
part of a class.

A function is made a friend by declaring it as a friend in the class:

friend void transfer(stock& s1, stock& s2, int amt);

This transfers stock from one item to another. It is definition is:

void transfer(stock& s1, stock& s2, int amt)
{

if (amt > s1.in_stock) {
s2.in_stock += s1.in_stock;
s1.in_stock = 0;

}
else {
s2.in_stock += amount
s1.in_stock -= amount;

}
}

• A friend must use qualified names. Friends do not have a this pointer.

• A member function of one class can be the friend of another class:

friend void X::f();

• If all the functions of a class are friend the class is a friend:

friend class Y;

3.9 Operator overloading

• Almost all of the C++ operators can be overloaded, including function
call () and subscript [].

. .* :: ?: and sizeof cannot be overloaded

• New operators cannot be invented.

• An override cannot change the precedence, associativity or arity of an
operator.

• Binary operators can be defined as member functions taking one argument
or friends taking two arguments.

aa@bb can be aa.operator@(bb) or operator@(aa,bb)

CHAPTER 3. CLASSES AND OBJECTS 40

• Unary operators can be a member function with no arguments or a friend
with one argument:

@aa can be aa.operator@() or operator@(aa)

• An operator function taking a basic type as it first argument cannot be a
member function:

aa+2 can be aa.operator+(2) but 2+aa has to be operator+(2,aa)

• Define an operator so that it works in the ”same way” as the standard
version. Do not surprise the user.

3.10 Guide lines

• Some guide lines for designing operator functions are:

– Generally if a binary operation does not update the objects make it
a friend. Friends are easier to understand.

– If it updates the object make it a member.

– If it has to return an lvalue make it a member.

– If it references only the object make it a member. Make it const if it
does not update.

– Return a reference if its safe, for efficiency with large objects.

A suitable style is shown in the vector class example below.

• Operators can be declared as private to prevent them from being used e.g.
=, & and comma can normally be used for class objects but not if declared
private.

3.11 I/O operator overloads

• The iostream operators << and >> can be overridden.

• The operator functions are declared as friends of the class.

• They must designed to be compatible with other iostream << and >> op-
erators. See the vector class program below for an example of how to do
this.

3.12 Example: A Vector Class

// file : vector.cpp
// vector class

#include <iostream.h>
#include <math.h> // for sqrt
#include <stdlib.h> // for exit

CHAPTER 3. CLASSES AND OBJECTS 41

const SIZE =3;

class vector {
double element[SIZE];

public:

// constructors...

vector(); // create null vector
vector(double* a); // create from array

// conversion...

operator double() const; // magnitude

// arithmetic operations...

friend vector operator+ (const vector& v1,
const vector& v2);

friend vector operator- (const vector& v1,
const vector& v2);

friend vector operator- (const vector& v1);
friend vector operator* (const vector& v1,

double d);
friend vector operator* (double d,

const vector& v1);
friend double operator* (const vector& v1,

const vector& v2);

// Comparison...

friend int operator== (const vector& v1,
const vector& v2);

friend int operator!= (const vector& v1,
const vector& v2);

// Assignment...

vector& operator+= (const vector& v1);
vector& operator-= (const vector& v1);
vector& operator*= (double d);

// subscript...

double& operator[] (int i);

// I/O operators...

friend istream& operator>> (istream& c,
vector& v1);

CHAPTER 3. CLASSES AND OBJECTS 42

friend ostream& operator<< (ostream& c,
const vector& v1);

};

vector::vector()
// Default constructor
{

for (int i = 0; i < SIZE; i++)
element[i] = 0.0;

}

vector::vector(double* a)
// Construct from array of doubles
{
for (int i = 0; i < SIZE; i++)

element[i] = a[i];
}

vector::operator double() const
// Type conversion to double = magnitude
{

double magnitude = 0.0;
for (int i = 0; i < SIZE; i++)

magnitude += element[i] * element[i];
return sqrt(magnitude);

}

vector operator+ (const vector& v1,
const vector& v2)

// vector addition v1 + v1
{

vector out;
for (int i = 0; i < SIZE; i++)
out.element[i] = v1.element[i] + v2.element[i];

return out;
}

vector operator- (const vector& v1,
const vector& v2)

// vector subtraction v1 - v2
{

vector out;
for (int i = 0; i < SIZE; i++)
out.element[i] = v1.element[i] - v2.element[i];

return out;
}

vector operator- (const vector& v1)
// vector negation -v1
{

CHAPTER 3. CLASSES AND OBJECTS 43

vector out;
for (int i = 0; i < SIZE; i++)

out.element[i] = -v1.element[i];
return out;

}

vector operator* (const vector& v1,
double d)

// scalar multiplication v1 * d
{

vector out;
for (int i = 0; i < SIZE; i++)
out.element[i] = v1.element[i] * d;

return out;
}

vector operator* (double d,
const vector& v1)

// scalar multiplication d * v1
{

return v1 * d;
}

double operator* (const vector& v1,
const vector& v2)

// Scalar product v1 * v2
{

double prod = 0.0;

for (int i = 0; i < SIZE; i++)
prod += v1.element[i] * v2.element[i];

return prod;
}

int operator== (const vector& v1, const vector& v2)
// Compare equal
// return 0 (false) if not equal
// return 1 (true) if equal
{

for (int i = 0; i < SIZE; i++)
if (v1.element[i] != v2.element[i])

return 0;
return 1;

}

int operator!= (const vector& v1, const vector& v2)
// Compare not equal
// return 0 (false) if equal
// return 1 (true) if not equal
{

CHAPTER 3. CLASSES AND OBJECTS 44

return !(v1 == v2);
}

vector& vector::operator+= (const vector& v1)
// vector add and assign
{

for (int i = 0; i < SIZE; i++)
element[i] += v1.element[i];

return *this;
}

vector& vector::operator-= (const vector& v1)
// vector subtract and assign
{

for (int i = 0; i < SIZE; i++)
element[i] -= v1.element[i];

return *this;
}

vector& vector::operator*= (double d)
// scalar multiply and assign
{

for (int i = 0; i < SIZE; i++)
element[i] *= d;

return *this;
}

double& vector::operator[] (int i)
// subscript operator
// subscript must be in range 1 to SIZE -1
{

if (i < 1 || i > SIZE) {
cerr << "Vector subscript out of range\n";
exit(1);

}
return element[i-1];

}

istream& operator>> (istream& c, vector& v1)
{

for (int i = 0; i < SIZE; i++)
cin >> v1.element[i];

return c;
}

ostream& operator<< (ostream& c, const vector& v1)
{

c << ’(’ << v1.element[0];
for (int i = 1; i < SIZE; i++)

c << ’,’ << v1.element[i];

CHAPTER 3. CLASSES AND OBJECTS 45

c << ’)’;
return c;

}

main()
{

cout << "demonstrate vector class\n";
cout << "------------------------\n";

double a2[] = {1,2,3};
double a3[] = {4,5,6};

vector v1;
vector v2 = a2;
vector v3 = a3;
cout << "v1 initialised to " << v1 << endl;
v1[1] = 1.0;
v1[2] = 1 + v1[1];
v1[3] = 1 + v1[2];

// v1[4] = 99; // stops program
cout << " then updated to " << v1 << endl;

cout << "Enter a vector for v1: ";
cin >> v1;
cout << "v1 is " << v1 << endl;
cout << "v2 is " << v2 << endl;
cout << "v3 is " << v3 << endl;

cout << "v1 + v2 = " << v1 + v2 << endl;
cout << "v1 - v2 = " << v1 - v2 << endl;
cout << "-v2 is = " << -v2 << endl;
cout << "v2 * 2 = " << v2 * 2 << endl;
cout << "3 * v2 = " << 3 * v2 << endl;
cout << "v2 * v3 = " << v2 * v3 << endl;

if (v1 == v2)
cout << "v1 is equal to v2\n";

else
cout << "v1 is not equal to v2\n";

if (v1 != v2)
cout << "v1 is not equal to v2\n";

else
cout << "v1 is equal to v2\n";

v2 += v1;
cout << "v2 after v2 += v1 is " << v2 << endl;
v3 -= v1;
cout << "v3 after v3 -= v1 is " << v3 << endl;
v1 *= 4;
cout << "v1 after v1 *= 4 is " << v1 << endl;

CHAPTER 3. CLASSES AND OBJECTS 46

cout << "magnitude of v2 is " << double(v2) << endl;
cout << "and what about +v2 " << +v2 << endl; //!!!

}

3.13 Constant Objects and Functions

• An object can be defined as constant. In which case it cannot be modified.

A class object must be initialised with constructors. Assignment to the
object is not allowed.

The ordinary member functions of a constant class object cannot be called.
Warning and error messages will be issued by the compiler.

The key word const is used to tell the compiler that a function will not
change any data members:

public:
int length() const;

and

int string::length() const
{
......
}

Take care. The const key word is just a promise. The function can
modify member data.

Input arguments must be declared as const to support constant objects:

friend int operator== (const string& s1,
const string& s2);

3.14 Inlining

• The compiler can be asked to use inline expansion rather than a subroutine
call for the execution of member functions.

The object oriented style tends to produce lots of function calls. Inlining
can reduce the performance overhead.

• Inlining can be requested in the class declaration by providing a body for
the function:

CHAPTER 3. CLASSES AND OBJECTS 47

public:
stock()

{ in_stock = 0;
reorder_level = -1;
unit_cost = 0.0; }

• Alternatively the inline keyword can be used with the function’s defini-
tion:

inline int stock::add(int amount)
// Add to stock
{

in_stock += amount;
return in_stock;

}

In this case, the definition must be in the header file.

• The compiler can ignore the inline request if the function is too long or
too complicated.

• Inlining should always be considered for constructors and destructors.
They can be implicitly called a lot of times and they are normally simple.

3.15 Static members

• A static data member is shared by all instances of a class.

Every instance of the class uses the same variable:

class silly {
int data1; // instance data
int data2; // instance data
static int usage; // class data

public:
static int reset_count; // public class data!!
static reset(); // static member function
.....
.....

}

static member data has to be defined in the source file:

int silly::usage = 0;
int silly::reset_count; // default int to zero

CHAPTER 3. CLASSES AND OBJECTS 48

• A static function can only manipulate static variables. It cannot access
instance variables.

The static key word is not used when a static member function is defined:

silly::reset()
{

usage = 0;
reset_count++;

}

A static member is used via its class name rather than the name of a class
object:

silly a;
silly b;
silly::reset(); // OK
cout << silly.reset_count;
cout << silly::usage; // incorrect
a.reset();

A static member can be used even when there are no instances of the class
defined.

3.16 Nested Classes

• Class declarations can be nested.

A nested class, if it is not public, is hidden within its enclosing class. This
reduces the global name space.

• Can be useful for classes that implement dynamic data structures:

class list {
struct listmem {

int data;
listmem* next;
listmem(int d, listmem* n)

{ data = d; next = n; }
};
listmem* root;

public:
list() { root = 0; }
insert(int d) { first = new listmem(d,root); }
// more stuff

};

CHAPTER 3. CLASSES AND OBJECTS 49

• Take care. Do not use them unless they are VERY simple. They can be
messy.

• A friend class can be used instead:

class listmem {
friend class list;

int data;
listmem* next;
listmem(int d, listmem* n) { data = d; next = n; }
// more stuff

};

class list {
listmem* root;

public:
list() { root = 0; }
insert(int d) { first = new listmem(d,root); }
// more stuff

};

3.17 Classes with Pointer Data Members

• There can be problems when class objects that contain pointers are cre-
ated, copied or destroyed.

• When class object is copied a memberwise copy is performed.

If a data member is a pointer, it is the value of the pointer that is copied
rather than the pointed to data.

So two objects will end up pointing at the same data.

• Consider:

class customer {
char* name;
int dnum;
int* disc; // variable discount array

public:
customer(char* n, int d);
void set_discount(int d, int v)

{ disc[d-1] = v; }
}

customer::customer(char* n, int d)
{

name = n;
dnum = d;
disc = new int[d];

CHAPTER 3. CLASSES AND OBJECTS 50

for (int i = 0; i < d; i++)
disc[i] = 0;

}

When this is used we have problems:

customer c1("Mr Smith",4);
customer c3("Mr Brown",2);

customer c2 = c1;
c1.set_discount(1,99); // OUCH!! both changed

c3 = c1;
c1.set_discount(1,33); // OUCH!! both changed

3.17.1 Copy constructors

• To avoid this problem we declare a copy constructor that binds with

customer c2 = c1;

This is done like this:

customer::customer(const customer& c)
{

name = c.name;
dnum = c.dnum;
disc = new int[c.dnum];
for (int i = 0; i < dnum; i++)

disc[i] = c.disc[i];
}

Now, after c2 is defined, c1 and c2 are independent objects.

3.17.2 Assignment operators

• However, the assignment c3 = c1 still has the same problem.

It is important to realise that assignment and initialisation are different
operations.

We will have to introduce an assignment operator that binds with

c3 = c1;

This is done as follows:

customer& customer::operator= (const customer& c)
{

delete [dnum] disc; // destroy existing array
name = c.name;
dnum = c.dnum;

CHAPTER 3. CLASSES AND OBJECTS 51

disc = new int[c.dnum];
for (int i = 0; i < dnum; i++)

disc[i] = c.disc[i];
return *this;

}

Now c1 and c3 are independent objects (at last!).

3.17.3 Destructors

• The customer class still has a fault.

What happens when a customer object is destroyed?

The pointer to the discount array will be thrown away but the array will
still be allocated in free store.

• We need a destructor:

customer::~customer()
{

delete [] disc;
}

3.18 Header files and Linkage

• C++ programs are normally constructed from separate files.

Files are the units of compilation and provide file scope.

A component (module) is specified by a header file and a source file:

– Families of classes, non-member functions, enumerations and type-
defs are combined to make a component.

– A header file defines the interface to the component.

– A source file provides the implementation of this interface.

Separate components and header files are a GOOD THING! They encour-
age:

– Flexibility and reusability.

– The development of common components.

– The separation of interface from implementation.

– High functional cohesion and low coupling.

• A header file provides declarations of classes and function, constants, enu-
merations and definitions of inline functions.

– A header file should never contain ordinary function definitions or
data definitions:

CHAPTER 3. CLASSES AND OBJECTS 52

int twice (int a) // not in header !!
{

return a * 2;
}

int a; // not in header !!

– Header files are included in the file that wants to use the component:

#include <iostream.h> // system
#include "stringc.h" // user

Header file names are conventionally suffixed by .h

• Source files contain definitions of the functions and objects declared in
their associated header files.

– They are compiled to make object files that are used by the linkage
editor to build a complete program.

– A source file includes its header file.

– Source file names are often suffixed by .c Other conventions are used.
For example, this document uses .cpp because the examples were
compiled with Borland C++.

– The user of a component does not need access to its source file.

• The main program file is a source file containing a function called main.
A program can have only one main function.

• Consider this simplified example:

// file myclass1.h

// might need some includes

class silly {
int a

public
int f1();
void f2();
// ... more stuff ...

}

inline void silly::f2 ()
{

//
}

CHAPTER 3. CLASSES AND OBJECTS 53

// file myclass1.cpp
#include <maths.h>
#include "myclass1.h"

int silly:: f1()
{

// use maths.h
}

// file myprog.cpp

#include <iostream.h>
#include "myclass1.h"

// definitions of local functions for main
....

main()
{

// use myclass.h and iostream.h
}

On some platforms, the following commands are used to build this pro-
gram:

CPP myprog.cpp
CPP myclass.cpp
LINK myprog.obj, myclass.obj

iostream.h myclass.h math.h

myprog.c myclass.c

myprog.o myclass.o LIBRARIES

myprog

? ? ? ?

? ?

-

?

�

Include

Compile

Link

CHAPTER 3. CLASSES AND OBJECTS 54

– The main program myprog.cpp can be written and compiled as soon
as myclass.h is written.

– The source file myclass.cpp is only needed to create the object file
myclass.obj for linking.

– The object files for the system include files are automatically provided
by the link command.

3.18.1 Multiple inclusion

• A header file can be included more than once.

For example, two separately included files can both include the same file.

Such multiple inclusion will cause duplication errors.

• This is avoided by using the pre-processor like this:

// file: mystuff.h

#ifdef MYSTUFF_H
#define MYSTUFF_H

// remander of header file

#endif

• System header files use this method.

3.18.2 Example: A String Class

The header file for the class is:

// file stringp.h
// super strings - header

#ifndef STRINGP_H
#define STRINGP_H

#include <iostream.h>

class string {
char* data; // pointer to data

public:
// constructors etc...

string(); // string x
string(const char* a); // string x = "abc"
string(const string& s); // copy constructor
~string(); // destructor

CHAPTER 3. CLASSES AND OBJECTS 55

// assignment...

string& operator= (const string& s);

// subscript etc...

char& operator[] (int i);
const char& operator[] (int i) const;
int length() const;

// i/o operators...

friend ostream& operator<< (ostream& c, const
string& s);

friend istream& operator>> (istream& c, string& s
);

// logical operators...

friend int operator== (const string& s1,
const string& s2);

friend int operator!= (const string& s1,
const string& s2);

};

#endif

Its source file is:

// file stringp.cpp

// Super string class - implementation

#include <iostream.h>
#include <string.h>
#include <iomanip.h>
#include <stdlib.h>

#include "stringp.h"

string::string()
{

data = new char[1]; // create null string
data[0] = 0;

}

string::string(const char* a)
{

CHAPTER 3. CLASSES AND OBJECTS 56

data = new char[strlen(a)+1];
strcpy(data,a);

}

string::string (const string& s)
{

data = new char[strlen(s.data)+1];
strcpy(data,s.data);

}

string::~string()
{

delete[strlen(data)+1] data; // old version of C++

// delete[] data; // ver 2.1 C++
}

string& string::operator= (const string& s)
{
// destroy exiting data

delete[strlen(data)+1] data; // old version of C++
// create new data

data = new char[strlen(s.data) +1];
strcpy(data,s.data);
return *this;

}

void error (const char* mess)
{

cerr << mess << " identified by " << __FILE__
<< "\nProgram abnormaly terminated.";

exit(1);
}

char& string::operator[] (int i)
{

if (i < 0 || i >= strlen(data))
error("Index out of range");

if (strlen(data) == 0)
error("Index access to empty string");

return data[i];
}

const char& string::operator[] (int i) const
{

if (i < 0 || i >= strlen(data))
error("Index out of range");

if (strlen(data) == 0)
error("Index access to empty string");

return data[i];

CHAPTER 3. CLASSES AND OBJECTS 57

}

int string::length() const
{

return strlen(data);
}

ostream& operator<< (ostream& c, const string& s)
{

c << s.data;
return c;

}

istream& operator>> (istream& c, string& s)
{

const BUFSIZE = 256;
char buff[BUFSIZE];

cin >> setw(BUFSIZE) >> buff;
s = buff;
return c;

}

int operator== (const string& s1, const string& s2)
{

if (strcmp(s1.data,s2.data) == 0)
return 1;

else
return 0;

}

int operator!= (const string& s1, const string& s2)
{

return !(s1 == s2);
}

The following program exercise the string class:

// file stringpe.cpp
// exercise super strings

#include <iostream.h>
#include "stringp.h"

#include "stringp.h" // woops!!!

main()
{

cout << "--------------------------------\n";

CHAPTER 3. CLASSES AND OBJECTS 58

cout << "This exercises the stringp class\n";
cout << "--------------------------------\n";
string a;
string b = "";
string c = "hello";
string d = c;
cout << ’"’ << a << "\" " << ’"’ << b << "\" "

<< ’"’ << c << "\" " << ’"’ << d << "\"\n";
a = "1234";
cout << "should be 1234 " << a << endl;
a = c; // cant do this with ordinary strings !!
cout << "should be hello " << a << endl;
cout << "give a string: ";
cin >> d;
cout << "You gave " << d << endl;
int i;
cout << "hello string is ";
for (i = 0; i < c.length(); i++)

cout << c[i];
cout << endl;
cout << "blank string is ";
for (i = 0; i < b.length(); i++)

cout << b[i];
cout << endl;
c[4] = ’X’;
cout << "hellX ?? " << c << endl;

// c[5] = ’Z’; // error!!
// b[0] = ’a’; // error!!

string cs = "abc";
if (cs == "abc")

cout << "strings equal\n";
if ("abc" == cs)

cout << "strings equal\n";

const string constS = "qwerty";
cout << constS.length() << endl;
cout << constS[1] << endl;
cout << constS << endl;

// constS[1] = ’X’; error - cant mod const!!
}

While this program demonstrates a more sensible use of the class:

// file stringpd.cpp
// Use the super string class.

#include <iostream.h>
#include "stringp.h"

CHAPTER 3. CLASSES AND OBJECTS 59

int my_friend(const string& name);

main()
{

cout << "----------------------------------\n";
cout << "Demonstration of the stringp class\n";
cout << "----------------------------------\n";
string query;
cout << "Give a name: ";
cin >> query;
if (my_friend(query))

cout << query << " is a friend\n";
else

cout << query << " is not a friend\n";
} // end main

int my_friend(const string& name)
{

string friends[5] = {"Adrian", "John", "Ann",
"Jane", "Mary"};

int found = 0;
int i = 0;
while (!found && i < 5)

if (name == friends[i])
found = 1;

else
i++;

return found;
}

Chapter 4

INHERITANCE

4.1 Classes and Inheritance

• Classes can be used to build other classes.

• A class can have an ”is a” relationship with another class. For example a
dog is an animal or a bus is a vehicle.

We make this relationship explicit by using inheritance.

• We declare a derived class (e.g. dog) by inheriting one or more base classes
(e.g. animal)

• A derived class has all the attributes, data and functions, of its base classes
although access may be restricted.

• To avoid confusion: A programmer using a class to define an object is
called a user. A programmer using a class as a base class is called a client.

4.2 Single Inheritance

4.2.1 Access to base class members

• Consider the following declaration of a time class that is available for use
as a base class:

class timec {
long int seconds;

public:
timec()

{ seconds = 0; };
timec(long int sec)

{ seconds = sec; };
timec(int hr, int min, int sec)

{ put_seconds(hr, min, sec); };
void forward();
void reset();

60

CHAPTER 4. INHERITANCE 61

int is_pm() const;
friend ostream& operator<< (ostream& c,

const timec& t);
protected:

void show(ostream& c) const;
private:

void put_seconds(int h, int m, int s);
void get_hms(int& h, int& m, int& s) const;

};

• The functions put_seconds and get_hms are private.

They are for ”internal” use by other member functions.

They are not available for users or clients.

• The function show is protected.

It can be used by clients but not by a users of the class.

It is provided to allow a derived class to have a print function that displays
timec in a suitable format such as h:m:s, without giving it full access to
seconds.

This approach gives a constant interface to both users and clients.

The operator << can be used but this involves awkward casts.

• The data members of a base class can be declared as protected but then
the implementation of the base class cannot be altered without disrupting
its derived classes.

This can be acceptable if the member data structure is very simple and
the class is not going to used in a publicly available class library.

4.2.2 Declaring a derived class

• Now lets declare a new time class called tagged_time that is a time with
an identifying tag value:

class tagged_time : public timec {
int tag;

public:
tagged_time(int t,

int h = 0, int m = 0, int s = 0);
tagged_time(int tag, const timec& t);
tagged_time& operator= (const tagged_time& t);
friend ostream& operator<<

(ostream& c, const tagged_time& t);
protected:

void show(ostream& c) const;
void show_tag(ostream& c) const;

private:
void reset();

};

CHAPTER 4. INHERITANCE 62

• A derived class has access to the public and protected member data and
functions of its base classes. It cannot access their private members.

This class is derived from timec. Thus:

– The public members of timec are public members in tagged_time.

– It has full access to the protected members of timec.

– The private members of timec exist but cannot accessed directly.
The member functions of timec must be used if necessary.

• The constructors of tagged_time cannot access seconds in timec, so an
initialiser list must be used:

tagged_time::tagged_time(int t, int h, int m, int s)
: timec(h,m,s)

{
tag = t;

}

tagged_time::tagged_time(int tag,
const timec& t) : timec(t)

{
tagged_time::tag = tag;

}

The Initialiser lists invoke timec constructors. When this is done the body
of tagged_time is executed to initialise the tag variable.

• A memberwise copy is performed when a timec object is assigned:

timec time1,
timec time2(12,0,0);
...
time1 = time2;

If this is done for a tagged_time object the tag identifier will be modified.
This is not satisfactory, so an assignment operator is provided:

tagged_time& tagged_time::operator=
(const tagged_time& t)

{
(timec)this = (timec)t;
return *this;

}

– This does not modify the tag variable.

– It has no direct access to the timec part of tagged_time, so casts
are used to invoke a timec memberwise copy.
The this pointer is cast to timec*, a pointer to timec, and the input
argument is cast to timec.

CHAPTER 4. INHERITANCE 63

• We have decided that tagged_time objects should not be reset, so the
void reset() is declared (overloaded) as private so that it cannot be
accessed.

• The tagged_time class is used just like the timec class:

timec time1(12,0,0);
time1.forward();
time1.reset();
tagged_time time2(1,12,0,0);
time2.forward();
time2.reset(); // error

4.3 Access to Base Classes

• A base class can be declared as public, private or protected when it is
inherited. This effects the visibility of the base class members.

private protected public

private protected public

private protected public

private protected public

public

protected

private

• Individual members can have their access adjusted:

class B { class C : private B {
int a; int c;

public: public:
int b; B::b; // adjust access to b

}; };

CHAPTER 4. INHERITANCE 64

The access level cannot be made any more or less restrictive than the level
in the base class.

4.4 Overloading inherited functions

• Inherited functions can be redefined or overridden:

class day_time : public timec {
int day;

public:
date_time(int da, int hr, int mi, int se);
void reset();
void forward();

};

void day_time::reset()
{

day = 0;
timec::reset();

}

void day_time::forward()
{

day++;
timec::reset();

}

The reset and forward functions in timec are unsuitable, so they are over-
loaded with a new versions.

• Note the scope operator applied to reset() in the function forward().
Without it, day would be reset. Its omission in the body of reset() would
cause a recursive loop.

4.5 Multiple Inheritance

• A class can have more than one base class. This is called multiple inheri-
tance.

• Lets declare two classes:

class timem {
int mins;
int hours;

public:
timem() { mins = 0; hours = 0; };
int set(int hr, int min);
void get(int& h, int& m) const;

};

CHAPTER 4. INHERITANCE 65

class date {
int day;
int month;
int year;

public:
date() { day = 0; month = 0; year = 0; }
int set(int d, int m, int y);
void get(int& d, int& m, int& y) const;

};

and uses them as base classes for :

class entry : public timem, public date {
char* comment;

public:
entry()

{ comment = "no entry"; };
void set(char* c)

{ comment = c; };
void display();

};

void entry::display()
{

int da, mo, yr, hr, mi;
date::get(da,mo,yr);
timem::get(hr,mi);
cout << da << ’,’ << mo << ’,’ << yr;
cout << ’@’ << hr << ’:’ << mi;
cout << ’|’ << comment;

}

– The scope operator :: is used in display to select the right version
of get.

– There is no initialiser list for entry(), which means the default con-
structors timem() and date() are used.

• The entry class is used like this:

entry e1;
e1.timem::set(1,30);
e1.date::set(1,2,1992);
e1.set("go to shops");
e1.display();
cout << endl;

CHAPTER 4. INHERITANCE 66

4.6 Initialisation

• The constructors for a class object are called in a specific order:

1. Base classes in declaration order.

2. Class object data members in declaration order.

3. The body of the specified constructor is executed.

• The initialisation list specifies which constructors should be used:

– The default constructor for a class is used if one is not given in the
list. Thus a constructor that takes no arguments need not appear in
the list.

– The list can contain constructors for member class objects.

– The order of constructors in the list is irrelevant.

• Destructors are called in reverse order to the constructors.

4.7 Virtual Base Classes

• If we have class inheritance of this form:

grandparent

parent 1 parent 2 parent 3

child

There can be a problem.

• The class child will have three copies of the grandparent class’s public and
private members because each parent inherits a separate copy of these
from grandparent.

• This is avoided by specifying grandparent as a virtual class in the parent
classes as in the following:

// file virtual.cpp
// play with virtual classes

#include <iostream.h>

class reg {
protected:

CHAPTER 4. INHERITANCE 67

int value;
public:

reg(int n = 0) { value = n; }
int clock()

{ return value; }
void latch(int v)

{ value = v; };
};

class shiftreg : public virtual reg {
public:
void shift_left()

{ value *= 2; }
};

class bitreg : public virtual reg {
public:

void set_bit(int mask)
{ value = value | mask; }

};

class shift_bitreg : public shiftreg,
public bitreg {

public:
shift_bitreg(int n = 0): reg(n) {};

};

main()
{

cout << "reg test\n";
cout << "--------\n";
shift_bitreg R1;
R1.latch(16);
R1.shift_left();
R1.set_bit(2);
cout << R1.clock() << endl;

}

• If a virtual base class has any constructors, there must be one that requires
no arguments or has defaults for all its argument.
The default constructor, with no arguments, will be called if a constructor
is not called from an initialisation list.

• A constructor for a virtual base class must be called from the derived class
that is actually creating an object. Calls from intermediate base classes
are ignored.

4.8 Design Style

• We use inheritance to model an ”is a” relationship between classes.

CHAPTER 4. INHERITANCE 68

• A ”has a” relationship can also be modelled with inheritance using pri-
vate base classes, which results in complete encapsulation of the inherited
classes.
However, this is not an ideal approach...

• A ”has a” relationship is best modelled by containment.
For example, an ALU has three registers:

class ALU {
A1 : shift_bitreg;
A2 : shift_bitreg;
A3 : shift_bitreg;

public:
void latch_A1 (int value);
void latch_A2 (int value);
int clock_A3();
void operation(int op_code);

};

• Private and protected inheritance should be used for ”is a” relationships.
The qualification should be used simply to manage access to the inherited
attributes.
For example, if we have a double ended integer queue:

class dqueue {
// implementation stuff
public:

dqueue();
void head_in(int data);
int head_out();
void tail_in(int data)
int tail_out();
int empty();
int full();

};

We might want to declare an integer stack, which is a restricted double
queue:

class stack : private dqueue {
public:

stack();
void push (int data)

{ head_in(data); };
int pop()

{ return head_out(); }
dqueue::empty;
dqueue::full;

};

Note the use of :: to give access to some dqueue functions.

Chapter 5

VIRTUAL FUNCTIONS

5.1 Polymorphism

• Polymorphism refers to the situation where objects belonging to different
classes can respond to the same message.

Thus, we can send a message without knowing the type of the recipient.

• The ”classic” example is a graphics interface:

Different shape objects such as circle and square respond to the same
messages such as show or rotate.

A list of objects can be displayed by sending a show message to every
member of the list with out knowing the exact type of each member.

This type of list is called heterogeneous.

A heterogeneous list contains objects from different classes. All the mem-
bers of a homogeneous list are the same type.

• In C++ polymorphism is implemented using virtual functions.

• To support polymorphism we must be able to refer to objects without
regard to their classes:

Ordinary non-reference, non-pointer variables cannot be used for this pur-
pose. Pointers or references must be used:

– An ordinary variable cannot refer to objects from different classes
because the space occupied by the classes will not be the same.

– A pointer or a reference to a class is an address. This is the same
size regardless of the size of the referenced object.

5.2 Assignment and Truncation

• Consider:

class parent {
int p1, p2;

69

CHAPTER 5. VIRTUAL FUNCTIONS 70

public:
...

};

class child : public parent {
int c1, c2;

public:
...

};

Objects of class parent have two instance variable p1 and p2. Objects of
class child have four instance variables p1, p2, c1 and c2.

• If we define

parent parent1, parent2;
child child1, child2;

The assignment

parent1 = child1;

is allowed but will result in truncation.

The value of child1 is converted to type parent by discarding the instance
variables c1 and c2. This assignment is equivalent to

parent1.p1 = child1.p1;
parent1.p2 = child1.p2;

The assignment

child1 = parent1;

is an error because there is no default cast from parent to child.

• We can use pointers and references without truncation:

parent* ptr = &child1;
parent& ref = child1;

Pointers are generally more useful for manipulating objects. The following
are both valid:

ptr = &parent2;
ptr = &child2;

• We can use pointers to define an heterogeneous list:

parent* list[4];

list[0] = &parent1;
list[1] = &child1;
list[2] = &child2;
list[3] = &parent2;

CHAPTER 5. VIRTUAL FUNCTIONS 71

5.3 Virtual Functions

• Consider the following program:

// file poly1.cpp
// play with virtual functions

#include <iostream.h>

class parent {
public:

virtual void Vfunct()
{ cout << " virtual function in parent\n"; };

void Nfunct()
{ cout << " normal function in parent\n"; };

};

class child : public parent {
public:

void Vfunct()
{ cout << " virtual function in child\n"; };

void Nfunct()
{ cout << " normal function in child\n"; };

};

main()
{

parent p1;
child c1;
parent* p2;

cout << "parent direct\n";
p1.Vfunct();
p1.Nfunct();
cout << "child direct\n";
c1.Vfunct();
c1.Nfunct();

cout << "parent indirect\n";
p2 = &p1;
p2->Vfunct();
p2->Nfunct();

cout << "child indirect\n";
p2 = &c1;
p2->Vfunct();
p2->Nfunct();

}

CHAPTER 5. VIRTUAL FUNCTIONS 72

This produces the following output:

parent direct
virtual function in parent
normal function in parent

child direct
virtual function in child
normal function in child

parent indirect
virtual function in parent
normal function in parent

child indirect
virtual function in child
normal function in parent

• For a non-virtual function the declaration of the pointer variable deter-
mines which function definition will be used.

For virtual functions the class of the object pointed to determines which
function is used.

• Nonvirtual functions are bound, associated with definitions, at compile
time (early binding).

Virtual functions are bound at run time (late binding).

• A function that overrides a virtual function is itself a virtual function.

• A functions name and arguments determine an override.

It is illegal to override a virtual function in a base class with a function
returning a different type. (not so for non-virtual functions).

• Constructors cannot be virtual.

The class of an object is always known when it is created, so virtual
constructors do not make sense.

• Destructors can be virtual.

If a destructor in a base class is declared as virtual, then destructors in
derived classes override the base class destructor.

• Friends cannot be virtual.

A friend is not a member function, so it cannot be virtual.

5.4 Abstract Base Classes

• Sometimes a class is only used for deriving other classes. This is an ab-
stract base class.

• It is often impossible to give useful definitions of the functions declared in
a base class. The declaration is just a dummy that will be overridden in
a derived class.

A dummy could be provided:

CHAPTER 5. VIRTUAL FUNCTIONS 73

virtual void display()
{ cout << "display() called for a class in "

<< "which it is not overridden\n"; }

A better alternative is available. The pure virtual function:

virtual void display() = 0;

• A class with a pure virtual function is always an abstract base class.

• An abstract base class can only be used to derive other classes.

It cannot be used to define objects.

If a class has a pure virtual function these rules will be enforced.

Chapter 6

TEMPLATES

Templates support generic classes and functions in C++. They are most useful
for defining container classes such as lists and queues.

6.1 A Simple Class Template

• We define a template class like this:

template<class T>
class stack {

T* v;
T* p;
int sz;

public:
stack(int s) { v = p = new T[sz=s]; }
~stack() { delete[] v; }
void push(T a) { *p++ = a; }
T pop() { return *--p; }
int size() const { return p-v; }

};

The argument T is the name of a type. It is replaced when the template
is used:

stack<int> sc(100); // a stack of integers
stack<accounts> Acc(13); // a stack of account objects

• It is usually best to debug an actual class, such as an integer stack, before
converting it to a template.

• Template functions do not have to be inline:

template<class T> void stack<T>::push(T a)
{

*p++ = a;
}

74

CHAPTER 6. TEMPLATES 75

6.2 A Simple Function Template

• Functions can be defined in a similar way:

template<class T> void swap(T& a, T& b)
{

T temp = a;
a = b;
b = temp;

}

• The compiler does all the dirty work and the function can be used without
effort:

int i,j;
double x,y

swap(i,j);
swap(x,y);
swap(i,x); // error does not match template

6.3 Template Arguments

• Template arguments do not have to be type names.

Character strings, function names and constant expressions can be used:

template<class T, int size> class buffer {
T item[size];

...
};
...
buffer<char,200> cbuff;
buffer<int,10> ibuff;

• Making size a template argument means that:

1. It must be known at compile time.

2. The buffer can be allocated without using free store.

Chapter 7

MORE INPUT AND
OUTPUT

• By default every C++ program can use three streams standard output
(cout), standard input (cin) and error output (cerr)

• These are supported by the header file <iostream.h> which declares four
classes:

ios

istream ostream

iostream

7.1 Input and output operators

• Standard << and >> operators for the built in types are provided:

cout << "give value";
int i;
cin >> i;
if (i < 0) cerr << "error on input";

• The streams cin and cout are tied, so the output buffer will be flushed
before input begins.

76

CHAPTER 7. MORE INPUT AND OUTPUT 77

7.1.1 Get and Put Functions

• Lower level manipulation is possible with the get() functions:

istream& get(char& c);
// Get a single character

istream& getline(char* p, int n, char t = ’\n’);
// Get line of at most n-1 characters and place in p,
// \n\0 placed at end of p.

• The >> operators and get() return non-zero if successful.

• There is an equivalent put() function for output, so we can write:

char c;
while (cin.get(c)) cout.put(c);

7.1.2 Other useful Functions

• The standard header file <ctype.h> contains some functions that are use-
ful for processing input.

For example, int isprint(char c) returns true if c is a printable char-
acter.

• There is a function for returning a character to the input stream:

// do nothing !!
cin.get(c);
cin.putback(c);

CHAPTER 7. MORE INPUT AND OUTPUT 78

7.2 Format State Flags

ios::skipws skip white space on input

ios::adjustfield field adjustment bit field
ios::left pad after value
ios::right pad before value
ios::internal pad between sign and value

ios::basefield integer base bit field
ios::dec decimal
ios::oct octal
ios::hex hexadecimal

ios::showbase show integer base
ios::showpos explicit + for positine integers
ios::uppercase E and X rtaher than e or x
ios::showpoint print trailing zeros

ios::floatfield floating point notation bitfield
ios::scientific .ddd Edd
ios::fixed ddd.dd

ios::unitbuf flush output after each output operation
ios::stdio flush output after each character

• In each of the named bit fields the flags are mutually exclusive. No more
than one flag should be set.

• Default is ios::skipws and ios::dec set with all the other flags clear.

7.3 Parameters

• Width

For output this sets width of the print field.

For the input of strings this sets the maximum number of characters read
(width - 1).

• Fill

Specifies the pad character.

• Precision

If the ios::scientific or ios::fixed flags are set this specifies the number of
digits to the right of the point.

Otherwise, it specifies the total number of digits to be printed.

CHAPTER 7. MORE INPUT AND OUTPUT 79

7.4 Setting Flags and Parameters

• The iostream class provides fill(), flags(), precision() and width()
for setting up format states and parameters.

• They return the relevant state component before it is changed. The fol-
lowing get the state without modification.

char c = cout.fill();
long f = cout.flag();
int p = cout.precision();
int w = cout.width();

The stored values can be used to restore the state later by specifing them
as arguments in the relevant function.

• The width, fill and precision parameters are simple to modify:

cout.fill(’*’);
cout.width(10);
cout.precision(6);
cout << value1 << value2;

A call of width() affects only the immediately following output operation.
For example, the value2 above will be printed with the default width.

¿ Setting the ios flags with flag() is a little more complicated.

The flag argument is built by ORing ios flags

cout.flags(ios::hex);
cout.flags(ios::hex | ios::left);
const long my_options = ios::left | ios::fixed;
long old_options = cout.flags(myoptions);

The flags() function sets the specified flags and clears all the others.

• The functions setf() and unsetf() can be used instead of flags(). They
only modify the flags specified in their argument

– The setf() function sets flags and unsetf() clears them.

– Like flags() they return the current flag settings.

• There is a two argument version of setf() for setting flags in named bit
fields:

cout.setf(ios::hex, ios::basefield);

This sets the ios::hex flag and clears all the other flags in ios::basefield.
All the flags not in ios::basefield are unchanged.

If the first argument is zero, all the flags in the field are cleared:

cout.setf(0,ios::basefield);

CHAPTER 7. MORE INPUT AND OUTPUT 80

7.4.1 Manipulators

• Manipulators an be used with the << and >> operators to modify the state
and parameters:

manipulator equivalent
setiosflags() single argument setf()
resetiosflags() unsetf()
setfill() fill()
setw() width()
setprecision() precision()

– They do not return the current state.

– The header file <iomanip.h> must be included.

• Other useful manipulators that do not need arguments are:

manipulator use
dec use octal notation
hex use hexadecimal notation
oct use decimal notation
endl add \n and flush
ends add \0 and flush
flush flush stream
ws eat white space

– These do not need <iomanip.h>.

• They are used like this:

cout << setwidth(10) << 13 << endl;
cout << hex << setw(10) << 13 << endl;
cout << dec << setiosflags(ios::left) << 13 << endl;
cout << setw(10) << hex << 13 << endl;

7.5 Detecting Errors and End of File

• The error state of a stream can be examined with
function returns nonzero (true) if
int eof(); end of file seen
int fail(); next operation will fail
int good(); next operation might succeed
int bad(); stream corrupted

• When good() or eof() are true the previous operation succeeded.

• If good() is false all further operations are ignored.

Calling the function void clear() with no arguments will resets the error
state so that processing can continue. This function can be used to clear
individual bits:

CHAPTER 7. MORE INPUT AND OUTPUT 81

clear();
clear(ios::badbit);

• When end of file is encountered eof() and fail() are true:

while (!cin.get(c).fail()) {
// process c

}
if (cin.eof()) {

// normal termination
}
else if (cin.bad()) {

// Fatal error message
}
else {

cin.clear();
// attempt to recover

}

• The stream state can also be accessed with rdstate():

switch (cin.rdstate()) {
case ios::goodbit:

// the last cin operation succeeded
break;

case ios::eofdbit:
// at end of file
break;

case ios::failbit:
// some kind of formatting error
// Most likely not too bad
break;

case ios::badbit:
// cin characters might be lost
break;

}

7.6 Named Files

The header file <fstream.h> declares four classes:

CHAPTER 7. MORE INPUT AND OUTPUT 82

ios

istream ostream

iostream iostream

ifstream ifstream ofstream

7.6.1 Opening and closing files

• When we open a named file we provide a name and a file mode.

• File modes are:

ios::in open for reading
ios::out open for output
ios::app append
ios::ate open and seek to end of file
ios::nocreate fail if file does not exist
ios::noreplace fail if file exists

Files opened in modes ios::out and ios::app will be created if they do
not exist.

Modes can be combined by ORing them:

– ios::out | ios::nocreate specifies an output file that must exist.

– ios::out | ios::in | ios::ate specifies an input output file that
should retain existing data.

• We open a file by defining a file object:

ifstream infile("report.doc",ios:in);
ofstream list("result.txt",ios::out);
fstream master("main.dta",ios::in|ios:out);

• ifstream defaults to input and the ofstream defaults to output. So we
can write

CHAPTER 7. MORE INPUT AND OUTPUT 83

ifstream infile("memo.doc");
ofstream list("result.txt");

• We can use the ios operator ! to test if a file opened without error.

ofstream list("result.txt");
if (!list) cerr << "open failed!!!";

• Files can be closed explicitly:

ifstream in("memo.doc");
in.close();

However, the stream’s destructor will be called when the stream object
goes out of scope.

7.6.2 Reading and writing files

Writing text to a file and reading it is easy:

// file file1.cpp
// Write to a disk file then read it!

#include <fstream.h>
#include <stdlib.h>

main()
{

ofstream out("iotest1.txt");
if (!out) {

cerr << "Output open failed\n";
exit(1);

}
out << "This is some test data.\n";
out << "This is the last line\n";

ifstream in("iotest1.txt");
if (!in) {

cerr << "Input open failed\n";
exit(1);

}
char line[81];
in.getline(line,81,’\n’);
while (in) {

cout << ’*’ << line;
in.getline(line,81,’\n’);

}
}

CHAPTER 7. MORE INPUT AND OUTPUT 84

7.7 Command Line Parameters

• Parameters can be given with the command that executes a program.

A program xcopy that copies file might be executed with the command:

xcopy file1.dat file2.dat

• A program gets its parameters by declaring main() with two arguments

main(int argc, char* argv[]) { ... }

The first argument gives the number of parameters.

The second is an array of strings, each of which is one of the parameters.

The first parameter is always the program name.

For the command given above the value af argc is 3 and the elements of
argv are:

argv[0] "xcopy"
argv[1] "file1.dat"
argv[2] "file2.dat"

• The following program shows how to process command line parameter:

// file xcopy.cpp
// command line arguments

#include <fstream.h>
#include <stdlib.h>

void error(char* s1, char* s2 = "")
{

cerr << s1 << ’ ’ << s2 << endl;
exit(1);

}

main(int argc, char* argv[])
{

if (argc != 3)
error("Wrong number of arguments");

ifstream in(argv[1]);
if (!in)

error("Cannot open",argv[1]);
ofstream out(argv[2]);
if (!out)

error("Cannot open",argv[2]);

char c;
while (out && in.get(c))

out.put(c);
}

Appendix A

OBJECT ORIENTED
DESIGN

A.1 The design process

• The design process has three stages:

– Analysis: Defining the scope of the problem to be solved.

– Design: Creating an overall structure for a system.

– Implementation: Writing and testing the code.

This is an iterative process.

• The following activities should permeate the process:

– Experimentation.

– Testing.

– Analysis of the design and the implementation.

– Documentation.

– Management.

Software maintenance is just more iterations though this process.

• It is important that analysis, design and implementation do not become
too detached from each other.

– The implementation platform and language can be ignored during the
analysis phase, because only the problem domain is being considered.

– The implementation language has to be considered during design,
but remember that you do not have to use all the language’s features
all the time.

85

APPENDIX A. OBJECT ORIENTED DESIGN 86

A.2 Classes in the design

• Classes represent concepts. There are two types of class in a system:

– The classes that directly reflect concepts in the application domain.
These are the concepts used by end-users to describe their problems
and solutions.

– The classes that are artifacts of the software implementation.
These are the concepts used by the designers and programmers to
describe their implementation techniques.

• Classes are arranged in hierarchies. They are composed into components.

A.3 Objects in the design

• Objects are instances of classes.

• There might be only one instance of a class in a design or there might be
many.

• Objects are arranged in a hierarchy.

Instance connections represent message paths between objects. This is
similar to data modelling with entity relationship diagrams.

• Objects reflect the distinction between the application and design domains
embodied in their classes.

• In C++ control or management objects will have to be introduced to
initialise and sequence the programs processing. The main() function can
be considered as sort of management object.

A.4 Design Steps

• If Object Oriented Analysis has been used, design can begin with a review
of the application’s classes and objects, and their relationships.

If structured analysis has been used, then some OOA must be performed
to establish the classes and objects in the problem domain before a review
can begin.

• The steps are similar for both the analysis and design phases. The differ-
ence being the level of abstraction:

The primary abstraction of the problem domain is analysis.

The supporting abstractions of the implementation are design.

• The design steps are iterative.

APPENDIX A. OBJECT ORIENTED DESIGN 87

A.4.1 Finding classes

• Talk to users, read any specification documents.

Nouns are a good indicator for potential classes and objects.

• Talk to experts in the application area and to your colleagues. Software
design is difficult on you own.

• Consider the problem domain in order to refine classes.

Eliminate abstractions outside the problem domain.

Check if any classes are duplicated.

• Introduce classes to support implementation.

Additional implementation dependent classes will be uncovered during the
design process.

• Use existing classes if possible. Look at other programs.

”Software design is hard and we need all the help we can get.”
Stoustrup

A.4.2 Specifying attributes

• The attributes of a class define its state. Attributes are specified as data
members in C++.

• Look for the adjectives used to describe classes and objects. These are a
indication of potential class attributes.

Form an a abstract view. Do not worry about hidden implementation
detail too early.

• Look for attributes that are objects and classes:

– Look for groups of attributes that may form classes in their own right.

– Some of the attributes might be class objects. Represent these as
class dependences.

A.4.3 Specifying dependencies

• Analyse the classes and establish:

– Any ”is a” relationships = inheritance.

– Any ”has a” relationships = containment.

– Any collaborative relationships = friendship.

• Look for possible generic classes, like container classes such as tables or
lists.

• Group classes into components.

• Review the distribution of operations in the class hierarchies:

APPENDIX A. OBJECT ORIENTED DESIGN 88

– Is an operation common to an entire class hierarchy or just to part
of it?

– Should an operation be available to the entire program or restricted
to the class hierarchy?

• Use a graphical notation. Draw diagrams.

A.4.4 Specifying operations

• A good starting point is to look for verbs in discussions with users or in
specification documents.

• Define the minimal set of operations required by the concept the repre-
sents.

– Define the public interface by identify the operation required by the
user of each class.
Consider how an object of the class is to be constructed, copied (if
at all) and destroyed.
Consider which operations could be added for notational convenience,
but include only a few really important ones.

– Consider which operations are to be virtual.
These are operations for which the class can act as an interface for
an implementation supplied by a derived class.

– Consider what commonality of naming and functionality can be achieved
across all the classes of a component.

• Define the private and protected interfaces:

Identify helper functions to support the operation of the public interface.

• It can be useful to classify operations in terms of how they effect the
internal state of an object:

– Foundation operations: Constructors, destructors and copy opera-
tions.

– Selectors: Operations that do not modify the state of an object.

– Modifiers: Operations that do alter the state of an object.

– Conversion operations: Operations that produce an object of another
type based on the state of the object to which they are applied.

– Iterators: Operations that somehow allow access to or use a sequence
of contained objects.

A.4.5 Specifying object connections

• Define the system’s class instances. Its objects.

• Establish object connections.

– Connections represent message paths.

APPENDIX A. OBJECT ORIENTED DESIGN 89

– At higher levels of abstraction represent the connections in a cardinal
form:
Object connections can be zero-to-one, one-to-one or one-to-many,
etc. Use a notation similar to entity relationship diagrams. (Data
modeling can be viewed as a subset of OOA.)

– At lower (program design) levels of abstraction replace the x-to-many
connections with container objects and one-to-one object connec-
tions.
Suitable containers might be tables or files (or even an object oriented
data base).
In simple cases the container can be implemented as a raw data
structure, such as an array of objects.
Classes have the advantage of providing constructors and destructors,
even if the contained objects are declared as public for simplicity.

Appendix B

STROUSTRUP’S RULES
OF THUMB

These rules of thumb are taken from Bjarne Stroustrup’s book The C++ Pro-
gramming Language, Second Edition.

He advises the reader not to take them too literally.

”To write a good program takes intelligence, taste and patience. You
are not going to get it right first time; experiment!”

B.1 While Learning C++

1. When you program, you create a concrete representation of the ideas in
your solution to some problem. Let the structure of the program reflect
those ideas as directly as possible:

(a) If you can think of ”it” as a separate idea, make it a class.

(b) If you can think of ”it” as a separate entity, make it an object of
some class.

(c) If two classes have something significant in common, make that com-
monality a base class.

(d) If a class is a container of objects make it a template.

2. When you define a class that does not implement a mathematical entity
like a matrix or a complex number or a low-level type such as a linked list:

(a) Don’t use global data.

(b) Don’t use global (nonmember) functions.

(c) Don’t use public data members.

(d) Don’t use friends except to avoid (a), (b) or (c).

(e) Don’t access the data members of other object directly.

(f) Don’t put a type field in a function; use virtual functions.

(g) Don’t use inline functions, except as a significant optimisation.

90

APPENDIX B. STROUSTRUP’S RULES OF THUMB 91

B.2 Design and Development

B.2.1 Concepts

• The most important aspect of software design is to be clear about what
you are trying to build.

• Successful software development is a long term activity.

• The systems we construct tend to be at the limit of the complexity that
we and our tools can handle.

• There are no good ”cookbook” methods that can replace intelligence, ex-
perience and good taste in design and programming.

• Experimentation is essential all non-trivial software development.

• Design and programming are iterative activities. They converge in steps
towards, but never reach, a perfect solution.

• The separate phases of a software project, such as design, programming
and testing, cannot be strictly separated.

• Programming and design cannot be considered without also considering
the management of these activities.

B.2.2 Approach

• Know what you are trying to achieve.

• Have specific and tangible aims.

• Don’t try to use technological fixes for sociological problems.

• Consider the long term

– in design and

– in the treatment of people.

• use existing systems as models, inspiration and as starting points.

• design for change:

– flexibility,

– extensibility,

– portability and

– re-use.

• Document, market and support re-usable components.

• Reward and encourage re-use of

– design,

– libraries, and

APPENDIX B. STROUSTRUP’S RULES OF THUMB 92

– classes.

• Focus on component design.

– Use classes to represent concepts.

– Define interfaces to reveal the minimal amount of information needed.

– Keep interfaces strongly typed wherever possible.

– Use application level types in interfaces wherever possible.

• Repeatedly review and refine both the design and the implementation.

• Use the best tools available for testing and for analysing

– the design and

– the implementation.

• Experiment, analyse and test as early as possible and as often as possible.

• Keep it simple; as simple as possible, but no simpler.

• Keep it small; don’t add features ”just in case”.

• Don’t forget about efficiency.

• Keep the level of formality appropriate to the scale of the project.

• Don’t forget that designers, programmers, and even managers are human.

B.3 Design and C++

• Evolve use towards data abstraction and object-oriented programming.

– Adopt new technology gradually; don’t rush.

– Use C++ features and techniques as needed (only).

– Match design and programming style.

• Focus on component design.

• Use classes to represent concepts.

– Use public inheritance to represent is a relationships.

– Use membership to represent has a relationships.

– Make sure uses dependencies are understood, non-cyclic whenever
possible, and minimal.

– Actively search for commonality in the concepts of the application
and implementation, and represent the resulting more general con-
cepts as base classes.

• Define interfaces to reveal the minimal amount of information needed:

– Use private data and member functions wherever possible.

APPENDIX B. STROUSTRUP’S RULES OF THUMB 93

– Use the public/protected distinction to distinguish between the needs
of designers of derived classes and general users.

• Minimise an interface’s dependencies on other interfaces.

• Keep interfaces strongly typed.

• Express interfaces in terms of application-level types.

Appendix C

OPERATOR SUMMARY

Unary operators and assignment operators are right associative. All others are
left associative. Each box holds operators with the same precedence. The boxes
are in desending order of precedence.

Operator Description Example
:: scope resolution class_name :: member
:: global :: name
. member selection object . member
-> member selection pointer -> member
[] subscripting pointer [expr]
() function call expr (expr_list)
() value construction type (expr_list)
sizeof size of object sizeof expr
sizeof size of type sizeof (type)
++ post increment lvalue ++
++ pre increment ++ lvalue
-- post decrement lvalue --
-- pre decrement -- lvalue
~ complement ~ expr
! not ! expr
- unary minus - expr
+ unary plus + expr
& address of & lvalue
* dereference * expr
new create new type
delete destroy delete pointer
delete[] destroy array delete [] pointer
() cast (type) expr

94

APPENDIX C. OPERATOR SUMMARY 95

Operator Description Example
* multiply expr * expr
.* member selection object . pointer-to-member
->* member selection pointer -> pointer_to_member
/ divide expr / expr
% modulo expr % expr
+ add expr + expr
- subtract expr - expr
<< shift left expr << expr
>> shift right expr >> expr
< less than expr < expr
<= less than or equal expr <= expr
> greater than expr > expr
>= greater than or equal expr >= expr
== equal expr == expr
!= not equal expr != expr
& bitwise AND expr & expr
^ bitwise exclusive OR expr ^ expr
| bitwise inclusive OR expr | expr
&& logical AND expr && expr
|| logical OR expr || expr
? : conditional expression expr ? expr : expr
= simple assignment lvalue = expr
*= multiply and assign lvalue *= expr
/= divide and assign lvalue /= expr
%= modulo and assign lvalue %= expr
+= add and assign lvalue += expr
-= subtract and assign lvalue -= expr
<<= shift left and assign lvalue <<= expr
>>= shift right and assign lvalue >>= expr
&= AND and assign lvalue &= expr
|= inclusive OR and assign lvalue |= expr
^= exclusive OR and assign lvalue ^= expr
, comma (sequencing) expr , expr

Appendix D

C++ KEYWORDS

asm continue float new signed try
auto default for operator sizeof typedef
break delete friend private static union
case do goto protected struct unsigned
catch double if public switch virtual
char else inline register template void
class enum int return this volatile
const extern long short throw while

96

Appendix E

Arithmetic Conversions

These lists explain, in detail, the conversions performed on operands during the
evaluation of expressions. Knowledge at this low level is not normally needed.

E.1 The usual arithmetic conversions

1. If either operand is of type long double, the other is converted to long
double.

2. Otherwise, if either operand is double, the other is converted to double.

3. Otherwise, if either operand is float, the other is converted to float.

4. Otherwise, the integral promotions are performed on both operands.

5. Then, if either operand is unsigned long the other is converted to unsigned
long.

6. Otherwise, if one operand is a long int and the other unsigned int, then if
a long int can represent all the values of unsigned int, the unsigned int is
converted to a long int; otherwise both operands are converted to unsigned
long int.

7. Otherwise, if either operand is unsigned, the other is converted to un-
signed.

8. Otherwise, both operands are int.

E.2 Integral promotions

1. A char, short int, enumerator or an int bit-field, in both their signed and
unsigned varieties, may be used wherever an int may be used.

2. If an int can represent all the values of the original type, the value is
converted to int; otherwise it is converted to unsigned int.

97

Appendix F

C Library Functions

For more information about C functions look at the relevent header files on
your computer. Alternatively, for more help, consult any good book on ANSI
C, such as Banahan, M., D. Brady and M. Doran, The C Book, 2nd Edition,
Addison-Wesley, 1991.

F.1 Functions by Type

F.1.1 Type and Conversion Functions

atof Convert string to double <stdlib.h>
atoi Convert string to integer <stdlib.h>
atol Convert string to long <stdlib.h>
isalnum Alphanumeric character? <ctype.h>
isalpha Alphabetic character? <ctype.h>
iscntrl Control character? <ctype.h>
isdigit Decimal digit? <ctype.h>
isgraph Printable character but not space? <ctype.h>
islower Lower case alphabetic character? <ctype.h>
isprint Printable character? <ctype.h>
ispunct Not alphanumeric or space? <ctype.h>
isspace White space? <ctype.h>
isupper Upper case alphabetic character? <ctype.h>
isxdigit Hexadecimal digit? <ctype.h>
strtod String to long <stdlib.h>
strtol String to double <stdlib.h>
strtoul String to unsigned long <stdlib.h>
tolower Convert char to lower case <ctype.h>
toupper Convert char to upper case <ctype.h>

98

APPENDIX F. C LIBRARY FUNCTIONS 99

F.1.2 Mathematical Functions

abs Absolute value of an int <stdlib.h>
acos Arccosine <math.h>
asin Arcsine <math.h>
atan Arctangent <math.h>
atan2 Principle value of arctangent of y/x <math.h>
atof Convert string to double <stdlib.h>
atoi Convert string to integer <stdlib.h>
atol Convert string to long <stdlib.h>
ceil Ceiling <math.h>
cos Cosine <math.h>
cosh Hyperbolic cosine <math.h>
div Quotient and remainder of int divide <stdlib.h>
exp ex <math.h>
fabs Absolute value of a double <math.h>
floor Floor <math.h>
fmod Floating point remainder of x/y <math.h>
frexp Floating point number to normalized

fraction and integer power of two <math.h>
labs Absolute value of a long <stdlib.h>
ldexp 2yx <math.h>
ldiv Quotient and remainder of long divide <stdlib.h>
log ln x <math.h>
log10 log x <math.h>
modf Floating point to integer fractional parts <math.h>
pow xy <math.h>
rand Generate a random integer <stdlib.h>
sin Sine <math.h>
sinh Hyperbolic sine <math.h>
sqrt Square root <math.h>
srand Seed the random number generator <stdlib.h>
strtod String to long <stdlib.h>
strtol String to double <stdlib.h>
strtoul String to unsigned long <stdlib.h>
tan Tangent <math.h>
tanh Hyperbolic tangent <math.h>

APPENDIX F. C LIBRARY FUNCTIONS 100

F.1.3 Miscellaneous Functions

abort Abnormality terminate program <stdlib.h>
atexit Register function for auto call on exit <stdlib.h>
bsearch Binary search sorted array <stdlib.h>
exit Normal exit <stdlib.h>
getenv Obtain environment information <stdlib.h>
qsort Sort array <stdlib.h>
rand Generate a random integer <stdlib.h>
signal Invoke a function to handle a signal <signal.h>
srand Seed the random number generator <stdlib.h>
system Process system command <stdlib.h>
va_arg Variable argument list access <stdarg.h>
va_end Variable argument list termination <stdarg.h>
va_start Variable argument list intitalization <stdarg.h>

APPENDIX F. C LIBRARY FUNCTIONS 101

F.1.4 Input/Output Functions

clearerr Clear a file error and eof <stdio.h>
fclose Close a file <stdio.h>
feof End of file? <stdio.h>
ferror File error? <stdio.h>
fflush Flush buffers <stdio.h>
fgetc Read a character from a file <stdio.h>
fgetpos Get position within a file <stdio.h>
fgets Read a string from a file <stdio.h>
fopen Open a file <stdio.h>
fprintf Write formatted output to a file <stdio.h>
fputc Write a character to a file <stdio.h>
fputs Write a string to a file <stdio.h>
fread Read several items from a file <stdio.h>
freopen Reopen a file <stdio.h>
fscanf Read formatted input from a file <stdio.h>
fseek Move within a file <stdio.h>
fsetpos Move within a file <stdio.h>
ftell Get position within a file <stdio.h>
fwrite Write a number of items to a file <stdio.h>
getc Read a character from a file <stdio.h>
getchar Read a character from stdin <stdio.h>
gets Read a string from stdin <stdio.h>
perror Print error <stdio.h>
printf Write formatted output to stdout <stdio.h>
putc Write a character to a file <stdio.h>
putchar Write a character to stdout <stdio.h>
puts Write a string to stdout <stdio.h>
remove Delete a file <stdio.h>
rename Rename a file <stdio.h>
rewind Move to the start of a file <stdio.h>
scanf Read formatted output from stdin <stdio.h>
setbuf Change buffering strategy <stdio.h>
setvbuf Change buffering strategy <stdio.h>
tmpfile Create temporary file <stdio.h>
tmpnam Generate a unique file name <stdio.h>
ungetc Unget a character <stdio.h>
vfprintf Write formatted output to a file <stdio.h>
vprintf Write formatted output to stdout <stdio.h>
vsprintf Write formatted output to stdout <stdio.h>

APPENDIX F. C LIBRARY FUNCTIONS 102

F.1.5 Memory Functions

calloc Allocate storage <stdlib.h>
free Free storage <stdlib.h>
malloc Allocate storage <stdlib.h>
memchr Find first of char in memory block <string.h>
memcmp Compare blocks of memory <string.h>
memcpy Copy block of memory <string.h>
memmove Copy block of memory <string.h>
memset Set value of memory block <string.h>
realloc Change the size of allocated storage <stdlib.h>

F.1.6 String Functions

asctime Convert time to string <time.h>
ctime Convert time to string <time.h>
sprintf Write formatted output to a string <stdio.h>
sscanf Read formatted input from a string <stdio.h>
strcat Concatenate strings <string.h>
strchr Find first of char in string <string.h>
strcmp Compare strings <string.h>
strcoll Compare strings <string.h>
strcpy Copy string <string.h>
strcspn Find first of char set in string <string.h>
strerror String equivalent of errno <string.h>
strftime Convert time to string <time.h>
strlen Length of string <string.h>
strncat Concatenate strings <string.h>
strncmp Compare strings <string.h>
strncpy Copy string <string.h>
strpbrk Find last of char set in string <string.h>
strrchr Find last of char in string <string.h>
strspn Length of first char set block in string <string.h>
strstr Find substring <string.h>
strtok Break string into tokens <string.h>
strxfrm String transform <string.h>

F.1.7 Date and Time Functions

asctime Convert time to string <time.h>
clock Time in ’ticks’ <time.h>
ctime Convert time to string <time.h>
difftime Difference between two calendar times <time.h>
gmttime Greenwich mean time <time.h>
localtime Local time <time.h>
mktime Calendar time <time.h>
strftime Convert time to string <time.h>
time Calendar time <time.h>

APPENDIX F. C LIBRARY FUNCTIONS 103

F.2 Functions by Library

F.2.1 ctype

isalnum Alphanumeric character?
isalpha Alphabetic character?
iscntrl Control character?
isdigit Decimal digit?
isgraph Printable character but not space?
islower Lower case alphabetic character?
isprint Printable character?
ispunct Not alphanumeric or space?
isspace White space?
isupper Upper case alphabetic character?
isxdigit Hexadecimal digit?
tolower Convert char to lower case
toupper Convert char to upper case

F.2.2 math

acos Arccosine
asin Arcsine
atan Arctangent
atan2 Principle value of arctangent of y/x
ceil Ceiling
cos Cosine
cosh Hyperbolic cosine
exp ex

fabs Absolute value of a double
floor Floor
fmod Floating point remainder of x/y
frexp Floating point number to
normalized fraction and
integer power of two
ldexp 2yx
log ln x
log10 log x
modf Floating point to integer and
fractional parts
pow xy

sin Sine
sinh Hyperbolic sine
sqrt Square root
tan Tangent
tanh Hyperbolic tangent

F.2.3 signal

signal Invoke a function to handle a signal

APPENDIX F. C LIBRARY FUNCTIONS 104

F.2.4 stdarg

va_arg Variable argument list access
va_end Variable argument list termination
va_start Variable argument list intitalization

F.2.5 stdio

clearerr Clear a file error and eof
fclose Close a file
feof End of file?
ferror File error?
fflush Flush buffers
fgetc Read a character from a file
fgetpos Get position within a file
fgets Read a string from a file
fopen Open a file
fprintf Write formatted output to a file
fputc Write a character to a file
fputs Write a string to a file
fread Read several items from a file
freopen Reopen a file
fscanf Read formatted input from a file
fseek Move within a file
fsetpos Move within a file
ftell Get position within a file
fwrite Write a number of items to a file
getc Read a character from a file
getchar Read a character from stdin
gets Read a string from stdin
perror Print error
printf Write formatted output to stdout
putc Write a character to a file
putchar Write a character to stdout
puts Write a string to stdout
remove Delete a file
rename Rename a file
rewind Move to the start of a file
scanf Read formatted output from stdin
setbuf Change buffering strategy
setvbuf Change buffering strategy
sprintf Write formatted output to a string
sscanf Read formatted input from string
tmpfile Create temporary file
tmpnam Generate a unique file name
ungetc Unget a character
vfprintf Write formatted output to a file
vprintf Write formatted output to stdout
vsprintf Write formatted output to stdout

APPENDIX F. C LIBRARY FUNCTIONS 105

F.2.6 stdlib

abort Abnormality terminate program
abs Absolute value of an int
atexit Register function for auto call on exit
atof Convert string to double
atoi Convert string to integer
atol Convert string to long
bsearch Binary search sorted array
calloc Allocate storage
div Quotient and remainder of int divide
exit Normal exit
free Free storage
getenv Obtain environment information
labs Absolute value of a long
ldiv Quotient and remainder of long divide
malloc Allocate storage
qsort Sort array
rand Generate a random integer
realloc Change the size of allocated storage
srand Seed the random number generator
strtod String to long
strtol String to double
strtoul String to unsigned long
system Process system command

F.2.7 string

memchr Find first of char in memory block
memcmp Compare blocks of memory
memcpy Copy block of memory
memmove Copy block of memory
memset Set value of memory block
strcat Concatenate strings
strchr Find first of char in string
strcmp Compare strings
strcoll Compare strings
strcpy Copy string
strcspn Find first of char set in string
strerror String equivalent of errno
strlen Length of string
strncat Concatenate strings
strncmp Compare strings
strncpy Copy string
strpbrk Find last of char set in string
strrchr Find last of char in string
strspn Length of first char set block in string
strstr Find substring
strtok Break string into tokens
strxfrm String transform

APPENDIX F. C LIBRARY FUNCTIONS 106

F.2.8 time

asctime Convert time to string
clock Time in ’ticks’
ctime Convert time to string
difftime Difference between two calendar times
gmttime Greenwich mean time
localtime Local time
mktime Calendar time
strftime Convert time to string
time Calendar time

