-1- This clause describes components used by other elements of the Standard C++ library. These components may also be used by C++ programs.
-2- The following clauses describe utility and allocator requirements, utility components, function objects, dynamic memory management utilities, and date/time utilities, as summarized in Table ??:
Clause | Header(s) |
lib.utility.requirements Requirements | |
lib.utility Utility components | <utility> |
lib.function.objects Function objects | <functional> |
lib.memory Memory | <memory> |
lib.date.time Date and time | <ctime> |
20.1 - Requirements [lib.utility.requirements]
-1-
lib.utility.requirements
describes requirements on template arguments.
lib.equalitycomparable through
lib.copyconstructible describe requirements on types used to
instantiate templates.
lib.allocator.requirements describes the requirements on
storage allocators.
20.1.1 - Equality comparison [lib.equalitycomparable]
-1- In Table ??, T is a type to be supplied by a C++ program instantiating a template, a, b and c are values of type T.
expression | return type | requirement |
a == b | convertible to bool |
== is an equivalence relation,
that is, it satisfies the following properties:
|
20.1.2 - Less than comparison [lib.lessthancomparable]
-1- In the following Table ??, T is a type to be supplied by a C++ program instantiating a template, a and b are values of type T.
expression | return type | requirement |
a < b | convertible to bool | < is a strict weak ordering relation (lib.alg.sorting) |
20.1.3 - Copy construction [lib.copyconstructible]
-1- In the following Table ??, T is a type to be supplied by a C++ program instantiating a template, t is a value of type T, and u is a value of type const T.
expression | return type | requirement |
T(t) | t is equivalent to T(t) | |
T(u) | u is equivalent to T(u) | |
t.~T() | ||
&t | T* | denotes the address of t |
&u | const T* | denotes the address of u |
20.1.4 - Default construction [lib.default.con.req]
-1-
The default constructor is not required.
Certain container class member function signatures specify the default constructor
as a default argument.
T()
must be a well-defined expression (dcl.init)
if one of those signatures is called using the default argument (dcl.fct.default).
20.1.5 - Allocator requirements [lib.allocator.requirements]
-1- The library describes a standard set of requirements for allocators, which are objects that encapsulate the information about an allocation model. This information includes the knowledge of pointer types, the type of their difference, the type of the size of objects in this allocation model, as well as the memory allocation and deallocation primitives for it. All of the containers (clause lib.containers) are parameterized in terms of allocators.
-2- Table ?? describes the requirements on types manipulated through allocators. All the operations on the allocators are expected to be amortized constant time. Table ?? describes the requirements on allocator types.
Variable | Definition |
T, U | any type |
X | an Allocator class for type T |
Y | the corresponding Allocator class for type U |
t | a value of type const T& |
a, a1, a2 | values of type X& |
b | a value of type Y |
p | a value of type X::pointer, obtained by calling |
a1.allocate, where a1 == a. | |
q | a value of type X::const_pointer obtained by |
conversion from a value p. | |
r | a value of type X::reference obtained by |
the expression *p. | |
s | a value of type X::const_reference obtained by |
the expression *q or by conversion from a value r. | |
u | a value of type Y::const_pointer obtained by |
calling Y::allocate , or else 0. | |
n | a value of type X::size_type. |
expression | return type | assertion/note |
pre/post-condition | ||
X::pointer | Pointer to T. | |
X::const_pointer | Pointer to const T. | |
X::reference | T& | |
X::const_reference | T const& | |
X::value_type | Identical to T | |
X::size_type | unsigned integral type | a type that can represent the size of the largest object in the allocation model. |
X::difference_type | signed integral type | a type that can represent the difference between any two pointers in the allocation model. |
typename X::template rebind<U>::other | Y | For all U (including T ), Y::template rebind<T>::other is X. |
a.address(r) | X::pointer | |
a.address(s) | X::const_pointer | |
a.allocate(n)
a.allocate(n,u) | X::pointer | Memory is allocated for n objects of type T but objects are not constructed. allocate may raise an appropriate exception. The result is a random access iterator.* |
a.deallocate(p, n) | (not used) |
All n T objects in the area pointed by p
must be destroyed prior to this call.
n must match the value passed to allocate to
obtain this memory.
Does not throw exceptions.
[Note:
p must not be null.
--- end note] |
a.max_size() | X::size_type | the largest value that can meaningfully be passed to X::allocate() . |
a1 == a2 | bool | returns true iff storage allocated from each can be deallocated via the other. |
a1 != a2 | bool | same as !(a1 == a2) |
X() | creates a default instance. Note: a destructor is assumed. | |
X a(b); | post: Y(a) == b | |
a.construct(p,t) | (not used) | Effect: new((void*)p) T(t) |
a.destroy(p) | (not used) | Effect: ((T*)p)->~T() |
[Footnote: It is intended that a.allocate be an efficient means of allocating a single object of type T , even when sizeof(T) is small. That is, there is no need for a container to maintain its own ``free list''. --- end foonote]
-3- The template class member rebind in the table above is effectively a template typedef: if the name Allocator is bound to SomeAllocator<T>, then Allocator::rebind<U>::other is the same type as SomeAllocator<U>.
-4- Implementations of containers described in this International Standard are permitted to assume that their Allocator template parameter meets the following two additional requirements beyond those in Table ??.
-5-
Implementors are encouraged to supply libraries that can accept allocators
that encapsulate more general memory models and that support non-equal
instances.
In such implementations, any requirements imposed on allocators
by containers beyond those requirements that appear in Table ??, and the
semantics of containers and algorithms when allocator instances compare
non-equal, are implementation-defined.
20.2 - Utility components [lib.utility]
-1- This subclause contains some basic template functions and classes that are used throughout the rest of the library.
Header <utility> synopsis
namespace std { //lib.operators, operators: namespace rel_ops { template<class T> bool operator!=(const T&, const T&); template<class T> bool operator> (const T&, const T&); template<class T> bool operator<=(const T&, const T&); template<class T> bool operator>=(const T&, const T&); }
//lib.pairs, pairs: template <class T1, class T2> struct pair; template <class T1, class T2> bool operator==(const pair<T1,T2>&, const pair<T1,T2>&); template <class T1, class T2> bool operator< (const pair<T1,T2>&, const pair<T1,T2>&); template <class T1, class T2> bool operator!=(const pair<T1,T2>&, const pair<T1,T2>&); template <class T1, class T2> bool operator> (const pair<T1,T2>&, const pair<T1,T2>&); template <class T1, class T2> bool operator>=(const pair<T1,T2>&, const pair<T1,T2>&); template <class T1, class T2> bool operator<=(const pair<T1,T2>&, const pair<T1,T2>&); template <class T1, class T2> pair<T1,T2> make_pair(const T1&, const T2&); }
-1-
To avoid redundant definitions of
operator!=
out of
operator==
and operators
>,
<=,
and
>=
out of
operator<,
the library provides the following:
template <class T> bool operator!=(const T& x, const T& y);
-2- Requires: Type T is EqualityComparable (lib.equalitycomparable).
-3- Returns:
!(x == y).
template <class T> bool operator>(const T& x, const T& y);
-4- Requires: Type T is LessThanComparable (lib.lessthancomparable).
-5- Returns:
y < x.
template <class T> bool operator<=(const T& x, const T& y);
-6- Requires: Type T is LessThanComparable (lib.lessthancomparable).
-7- Returns:
!(y < x).
template <class T> bool operator>=(const T& x, const T& y);
-8- Requires: Type T is LessThanComparable (lib.lessthancomparable).
-9- Returns: !(x < y).
-10-
In this library,
whenever a declaration is provided for an
operator!=,
operator>,
operator>=,
or
operator<=,
and requirements and semantics are not explicitly provided,
the requirements and semantics are as specified in this clause.
20.2.2 - Pairs [lib.pairs]
-1-
The library provides a template for heterogeneous pairs of values.
The library also provides a matching template function to simplify
their construction.
template <class T1, class T2>
struct pair {
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair();
pair(const T1& x, const T2& y);
template<class U, class V> pair(const pair<U, V> &p);
};
pair();
-2- Effects:
Initializes its members as if implemented:
pair() : first(T1()), second(T2()) {}
pair(const T1& x, const T2& y);
-3- Effects:
The constructor initializes
first
with x and
second
with y .
template<class U, class V> pair(const pair<U, V> &p);
-4- Effects:
Initializes members from the corresponding members of the argument,
performing implicit conversions as needed.
template <class T1, class T2>
bool operator==(const pair<T1, T2>& x, const pair<T1, T2>& y);
-5- Returns:
x.first == y.first && x.second == y.second.
template <class T1, class T2>
bool operator<(const pair<T1, T2>& x, const pair<T1, T2>& y);
-6- Returns:
x.first < y.first || (!(y.first < x.first) && x.second < y.second).
template <class T1, class T2>
pair<T1, T2> make_pair(const T1& x, const T2& y);
-7- Returns: pair<T1, T2>(x, y).
-8- [Example: In place of:
a C++ program may contain:return pair<int, double>(5, 3.1415926); //explicit types
return make_pair(5, 3.1415926); //types are deduced
-1- Function objects are objects with an operator() defined. They are important for the effective use of the library. In the places where one would expect to pass a pointer to a function to an algorithmic template (clause lib.algorithms), the interface is specified to accept an object with an operator() defined. This not only makes algorithmic templates work with pointers to functions, but also enables them to work with arbitrary function objects.
Header <functional> synopsis
namespace std { //lib.base, base: template <class Arg, class Result> struct unary_function; template <class Arg1, class Arg2, class Result> struct binary_function;
//lib.arithmetic.operations, arithmetic operations: template <class T> struct plus; template <class T> struct minus; template <class T> struct multiplies; template <class T> struct divides; template <class T> struct modulus; template <class T> struct negate;
//lib.comparisons, comparisons: template <class T> struct equal_to; template <class T> struct not_equal_to; template <class T> struct greater; template <class T> struct less; template <class T> struct greater_equal; template <class T> struct less_equal;
//lib.logical.operations, logical operations: template <class T> struct logical_and; template <class T> struct logical_or; template <class T> struct logical_not;
//lib.negators, negators: template <class Predicate> struct unary_negate; template <class Predicate> unary_negate<Predicate> not1(const Predicate&); template <class Predicate> struct binary_negate; template <class Predicate> binary_negate<Predicate> not2(const Predicate&);
//lib.binders, binders: template <class Operation> class binder1st; template <class Operation, class T> binder1st<Operation> bind1st(const Operation&, const T&); template <class Operation> class binder2nd; template <class Operation, class T> binder2nd<Operation> bind2nd(const Operation&, const T&);
//lib.function.pointer.adaptors, adaptors: template <class Arg, class Result> class pointer_to_unary_function; template <class Arg, class Result> pointer_to_unary_function<Arg,Result> ptr_fun(Result (*)(Arg)); template <class Arg1, class Arg2, class Result> class pointer_to_binary_function; template <class Arg1, class Arg2, class Result> pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*)(Arg1,Arg2));
//lib.member.pointer.adaptors, adaptors: template<class S, class T> class mem_fun_t; template<class S, class T, class A> class mem_fun1_t; template<class S, class T> mem_fun_t<S,T> mem_fun(S (T::*f)()); template<class S, class T, class A> mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A)); template<class S, class T> class mem_fun_ref_t; template<class S, class T, class A> class mem_fun1_ref_t; template<class S, class T> mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)()); template<class S, class T, class A> mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A)); template <class S, class T> class const_mem_fun_t; template <class S, class T, class A> class const_mem_fun1_t; template <class S, class T> const_mem_fun_t<S,T> mem_fun(S (T::*f)() const); template <class S, class T, class A> const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const); template <class S, class T> class const_mem_fun_ref_t; template <class S, class T, class A> class const_mem_fun1_ref_t; template <class S, class T> const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const); template <class S, class T, class A> const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const); }
-2- Using function objects together with function templates increases the expressive power of the library as well as making the resulting code much more efficient.
-3- [Example: If a C++ program wants to have a by-element addition of two vectors a and b containing double and put the result into a, it can do:
transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
-4- [Example: To negate every element of a:
The corresponding functions will inline the addition and the negation.transform(a.begin(), a.end(), a.begin(), negate<double>());
-5-
To enable adaptors and other components to manipulate function objects that take
one or two arguments it is required that the function objects
correspondingly provide typedefs
argument_type
and
result_type
for function objects that take one argument and
first_argument_type,
second_argument_type , and
result_type
for function objects that take two arguments.
20.3.1 - Base [lib.base]
-1- The following classes are provided to simplify the typedefs of the argument and result types:
template <class Arg, class Result> struct unary_function { typedef Arg argument_type; typedef Result result_type; };
template <class Arg1, class Arg2, class Result> struct binary_function { typedef Arg1 first_argument_type; typedef Arg2 second_argument_type; typedef Result result_type; };
-1-
The library provides basic function object classes for all of the arithmetic
operators in the language (expr.mul, expr.add).
template <class T> struct plus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;
};
-2-
operator()
returns
x + y.
template <class T> struct minus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;
};
-3-
operator()
returns
x - y.
template <class T> struct multiplies : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;
};
-4-
operator()
returns
x * y.
template <class T> struct divides : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;
};
-5-
operator()
returns
x / y.
template <class T> struct modulus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;
};
-6-
operator()
returns
x % y.
template <class T> struct negate : unary_function<T,T> {
T operator()(const T& x) const;
};
-7-
operator()
returns
-x.
20.3.3 - Comparisons [lib.comparisons]
-1-
The library provides basic function object classes for all of the comparison
operators in the language (expr.rel, expr.eq).
template <class T> struct equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-2-
operator()
returns
x == y.
template <class T> struct not_equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-3-
operator()
returns
x != y.
template <class T> struct greater : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-4-
operator()
returns
x > y.
template <class T> struct less : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-5-
operator()
returns
x < y.
template <class T> struct greater_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-6-
operator()
returns
x >= y.
template <class T> struct less_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-7- operator() returns x <= y.
-8-
For templates
greater,
less,
greater_equal,
and
less_equal,
the specializations for any pointer type yield a total order,
even if the built-in operators
<,
>,
<=,
>=
do not.
20.3.4 - Logical operations [lib.logical.operations]
-1-
The library provides basic function object classes for all of the logical
operators in the language (expr.log.and, expr.log.or, expr.unary.op).
template <class T> struct logical_and : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-2-
operator()
returns
x && y.
template <class T> struct logical_or : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;
};
-3-
operator()
returns
x || y.
template <class T> struct logical_not : unary_function<T,bool> {
bool operator()(const T& x) const;
};
-4-
operator()
returns
!x.
20.3.5 - Negators [lib.negators]
-1-
Negators
not1
and
not2
take a unary and a binary predicate, respectively, and return their complements
(expr.unary.op).
template <class Predicate>
class unary_negate
: public unary_function<typename Predicate::argument_type,bool> {
public:
explicit unary_negate(const Predicate& pred);
bool operator()(const typename Predicate::argument_type& x) const;
};
-2-
operator()
returns
!pred(x).
template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred);
-3- Returns:
unary_negate<Predicate>(pred).
template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type, bool> {
public:
explicit binary_negate(const Predicate& pred);
bool operator()(const typename Predicate::first_argument_type& x,
const typename Predicate::second_argument_type& y) const;
};
-4-
operator()
returns
!pred(x,y).
template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred);
-5- Returns:
binary_negate<Predicate>(pred).
20.3.6 - Binders [lib.binders]
-1-
Binders
bind1st
and
bind2nd
take a function object
f
of two arguments and a value
x
and return a function object of one argument constructed out of
f
with the first or second argument correspondingly bound to
x.
20.3.6.1 - Template class binder1st [lib.binder.1st]
template <class Operation> class binder1st : public unary_function<typename Operation::second_argument_type, typename Operation::result_type> { protected: Operation op; typename Operation::first_argument_type value;
public: binder1st(const Operation& x, const typename Operation::first_argument_type& y); typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const; };
-1- The constructor initializes op with x and value with y .
-2-
operator()
returns
op(value,x).
20.3.6.2 - bind1st [lib.bind.1st]
template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x);
-1- Returns:
binder1st<Operation>(op, typename Operation::first_argument_type(x)).
20.3.6.3 - Template class binder2nd [lib.binder.2nd]
template <class Operation> class binder2nd : public unary_function<typename Operation::first_argument_type, typename Operation::result_type> { protected: Operation op; typename Operation::second_argument_type value;
public: binder2nd(const Operation& x, const typename Operation::second_argument_type& y); typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const; };
-1- The constructor initializes op with x and value with y .
-2-
operator()
returns
op(x,value).
20.3.6.4 - bind2nd [lib.bind.2nd]
template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x);
-1- Returns:
binder2nd<Operation>(op, typename Operation::second_argument_type(x)).
-2- [Example:
finds the first integer in vector v greater than 5;find_if(v.begin(), v.end(), bind2nd(greater<int>(), 5));
finds the first integer in v less than 5.find_if(v.begin(), v.end(), bind1st(greater<int>(), 5));
-1- To allow pointers to (unary and binary) functions to work with function adaptors the library provides:
template <class Arg, class Result> class pointer_to_unary_function : public unary_function<Arg, Result> { public: explicit pointer_to_unary_function(Result (*f)(Arg)); Result operator()(Arg x) const; };
-2-
operator()
returns
f(x).
template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result (*f)(Arg));
-3- Returns: pointer_to_unary_function<Arg, Result>(f).
template <class Arg1, class Arg2, class Result> class pointer_to_binary_function : public binary_function<Arg1,Arg2,Result> { public: explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2)); Result operator()(Arg1 x, Arg2 y) const; };
-4-
operator()
returns
f(x,y).
template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result>
ptr_fun(Result (*f)(Arg1, Arg2));
-5- Returns: pointer_to_binary_function<Arg1,Arg2,Result>(f).
-6- [Example:
replaces each C with C++ in sequence v.*replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(strcmp), "C")), "C++");
[Footnote: Implementations that have multiple pointer to function types provide additional ptr_fun template functions. --- end foonote]
-1- The purpose of the following is to provide the same facilities for pointer to members as those provided for pointers to functions in lib.function.pointer.adaptors.
template <class S, class T> class mem_fun_t : public unary_function<T*, S> { public: explicit mem_fun_t(S (T::*p)()); S operator()(T* p) const; };
-2- mem_fun_t calls the member function it is initialized with given a pointer argument.
template <class S, class T, class A> class mem_fun1_t : public binary_function<T*, A, S> { public: explicit mem_fun1_t(S (T::*p)(A)); S operator()(T* p, A x) const; };
-3- mem_fun1_t calls the member function it is initialized with given a pointer argument and an additional argument of the appropriate type.
template<class S, class T> mem_fun_t<S,T> mem_fun(S (T::*f)());
template<class S, class T, class A> mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
-4- mem_fun(&X::f) returns an object through which X::f can be called given a pointer to an X followed by the argument required for f (if any).
template <class S, class T> class mem_fun_ref_t : public unary_function<T, S> { public: explicit mem_fun_ref_t(S (T::*p)()); S operator()(T& p) const; };
-5- mem_fun_ref_t calls the member function it is initialized with given a reference argument.
template <class S, class T, class A> class mem_fun1_ref_t : public binary_function<T, A, S> { public: explicit mem_fun1_ref_t(S (T::*p)(A)); S operator()(T& p, A x) const; };
-6- mem_fun1_ref_t calls the member function it is initialized with given a reference argument and an additional argument of the appropriate type.
template<class S, class T> mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
template<class S, class T, class A> mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A));
-7- mem_fun_ref(&X::f) returns an object through which X::f can be called given a reference to an X followed by the argument required for f (if any).
template <class S, class T> class const_mem_fun_t : public unary_function<T*, S> { public: explicit const_mem_fun_t(S (T::*p)() const); S operator()(const T* p) const; };
-8- const_mem_fun_t calls the member function it is initialized with given a pointer argument.
template <class S, class T, class A> class const_mem_fun1_t : public binary_function<T*, A, S> { public: explicit const_mem_fun1_t(S (T::*p)(A) const); S operator()(const T* p, A x) const; };
-9- const_mem_fun1_t calls the member function it is initialized with given a pointer argument and an additional argument of the appropriate type.
template<class S, class T> const_mem_fun_t<S,T> mem_fun(S (T::*f)() const);
template<class S, class T, class A> const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const);
-10- mem_fun(&X::f) returns an object through which X::f can be called given a pointer to an X followed by the argument required for f (if any).
template <class S, class T> class const_mem_fun_ref_t : public unary_function<T, S> { public: explicit const_mem_fun_ref_t(S (T::*p)() const); S operator()(const T& p) const; };
-11- const_mem_fun_ref_t calls the member function it is initialized with given a reference argument.
template <class S, class T, class A> class const_mem_fun1_ref_t : public binary_function<T, A, S> { public: explicit const_mem_fun1_ref_t(S (T::*p)(A) const); S operator()(const T& p, A x) const; };
-12- const_mem_fun1_ref_t calls the member function it is initialized with given a reference argument and an additional argument of the appropriate type.
template<class S, class T> const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const);
template<class S, class T, class A> const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const);
-13-
mem_fun_ref(&X::f)
returns an object through which
X::f
can be called given a reference to an
X
followed by the argument required for
f
(if any).
20.4 - Memory [lib.memory]
Header <memory> synopsis
namespace std { //lib.default.allocator, the default allocator: template <class T> class allocator; template <> class allocator<void>; template <class T, class U> bool operator==(const allocator<T>&, const allocator<U>&) throw(); template <class T, class U> bool operator!=(const allocator<T>&, const allocator<U>&) throw();
//lib.storage.iterator, raw storage iterator: template <class OutputIterator, class T> class raw_storage_iterator;
//lib.temporary.buffer, temporary buffers: template <class T> pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n); template <class T> void return_temporary_buffer(T* p);
//lib.specialized.algorithms, specialized algorithms: template <class InputIterator, class ForwardIterator> ForwardIterator uninitialized_copy(InputIterator first, InputIterator last, ForwardIterator result); template <class ForwardIterator, class T> void uninitialized_fill(ForwardIterator first, ForwardIterator last, const T& x); template <class ForwardIterator, class Size, class T> void uninitialized_fill_n(ForwardIterator first, Size n, const T& x); // lib.auto.ptr, pointers: template<class X> class auto_ptr; }
namespace std { template <class T> class allocator;
//specialize for void: template <> class allocator<void> { public: typedef void* pointer; typedef const void* const_pointer; // reference-to-void members are impossible. typedef void value_type; template <class U> struct rebind { typedef allocator<U> other; }; };
template <class T> class allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; template <class U> struct rebind { typedef allocator<U> other; };
allocator() throw(); allocator(const allocator&) throw(); template <class U> allocator(const allocator<U>&) throw(); ~allocator() throw();
pointer address(reference x) const; const_pointer address(const_reference x) const;
pointer allocate( size_type, allocator<void>::const_pointer hint = 0); void deallocate(pointer p, size_type n); size_type max_size() const throw();
void construct(pointer p, const T& val); void destroy(pointer p); }; }
pointer address(reference x) const;
-1- Returns:
&x.
const_pointer address(const_reference x) const;
-2- Returns:
&x.
pointer allocate(size_type n, allocator<void>::const_pointer hint=0);
-3- Notes: Uses ::operator new(size_t) (lib.new.delete).
-4- Requires: hint either 0 or previously obtained from member allocate and not yet passed to member deallocate. The value hint may be used by an implementation to help improve performance*.
[Footnote: In a container member function, the address of an adjacent element is often a good choice to pass for this argument. --- end foonote]
-5- Returns: a pointer to the initial element of an array of storage of size n * sizeof(T), aligned appropriately for objects of type T.
-6- Note: the storage is obtained by calling ::operator new(size_t), but it is unspecified when or how often this function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so desires.
-7- Throws:
bad_alloc
if the storage cannot be obtained.
void deallocate(pointer p, size_type n);
-8- Requires: p shall be a pointer value obtained from allocate(). n shall equal the value passed as the first argument to the invocation of allocate which returned p.
-9- Effects: Deallocates the storage referenced by p .
-10- Notes:
Uses
::operator delete(void*)
(lib.new.delete), but it is unspecified when this function is called.
size_type max_size() const throw();
-11- Returns:
the largest value
N
for which the call
allocate(N,0)
might succeed.
void construct(pointer p, const_reference val);
-12- Returns:
new((void *)p) T(val)
void destroy(pointer p);
-13- Returns:
((T*)p)->~T()
20.4.1.2 - allocator globals [lib.allocator.globals]
template <class T1, class T2>
bool operator==(const allocator<T1>&, const allocator<T2>&) throw();
-1- Returns:
true.
template <class T1, class T2>
bool operator!=(const allocator<T1>&, const allocator<T2>&) throw();
-2- Returns:
false.
20.4.2 - Raw storage iterator [lib.storage.iterator]
-1- raw_storage_iterator is provided to enable algorithms to store their results into uninitialized memory. The formal template parameter OutputIterator is required to have its operator* return an object for which operator& is defined and returns a pointer to T, and is also required to satisfy the requirements of an output iterator (lib.output.iterators).
namespace std { template <class OutputIterator, class T> class raw_storage_iterator : public iterator<output_iterator_tag,void,void,void,void> { public: explicit raw_storage_iterator(OutputIterator x);
raw_storage_iterator<OutputIterator,T>& operator*(); raw_storage_iterator<OutputIterator,T>& operator=(const T& element); raw_storage_iterator<OutputIterator,T>& operator++(); raw_storage_iterator<OutputIterator,T> operator++(int); }; }
raw_storage_iterator(OutputIterator x);
-2- Effects:
Initializes the iterator to point to the same value to which x points.
raw_storage_iterator<OutputIterator,T>& operator*();
-3- Returns:
*this
raw_storage_iterator<OutputIterator,T>& operator=(const T& element);
-4- Effects: Constructs a value from element at the location to which the iterator points.
-5- Returns:
A reference to the iterator.
raw_storage_iterator<OutputIterator,T>& operator++();
-6- Effects:
Pre-increment: advances the iterator and returns a reference to the updated iterator.
raw_storage_iterator<OutputIterator,T> operator++(int);
-7- Effects:
Post-increment: advances the iterator and returns the old value of the iterator.
20.4.3 - Temporary buffers [lib.temporary.buffer]
template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
-1- Effects: Obtains a pointer to storage sufficient to store up to n adjacent T objects.
-2- Returns:
A
pair
containing the buffer's address and capacity (in the units of
sizeof(T)),
or a pair of 0 values if no storage can be obtained.
template <class T> void return_temporary_buffer(T* p);
-3- Effects: Deallocates the buffer to which p points.
-4- Requires:
The buffer shall have been previously allocated by
get_temporary_buffer.
20.4.4 - Specialized algorithms [lib.specialized.algorithms]
-1-
All the iterators that are used as formal template parameters in the following
algorithms are required to have their
operator*
return an object for which
operator&
is defined and returns a pointer to
T.
In the algorithm
uninitialized_copy,
the formal template parameter
InputIterator
is required to satisfy the requirements of an input iterator
(lib.input.iterators).
In all of the following algorithms,
the formal template parameter
ForwardIterator
is required to satisfy the requirements of a forward iterator
(lib.forward.iterators)
and also to satisfy the requirements of a mutable iterator
(lib.iterator.requirements),
and is required to have the property that no exceptions are thrown
from increment, assignment, comparison, or dereference of valid iterators.
In the following algorithms, if an exception is thrown there are no effects.
20.4.4.1 - uninitialized_copy [lib.uninitialized.copy]
template <class InputIterator, class ForwardIterator>
ForwardIterator
uninitialized_copy(InputIterator first, InputIterator last,
ForwardIterator result);
-1- Effects:
for (; first != last; ++result, ++first)
new (static_cast<void*>(&*result))
typename iterator_traits<ForwardIterator>::value_type(*first);
-2- Returns:
result
20.4.4.2 - uninitialized_fill [lib.uninitialized.fill]
template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first, ForwardIterator last,
const T& x);
-1- Effects:
for (; first != last; ++first)
new (static_cast<void*>(&*first))
typename iterator_traits<ForwardIterator>::value_type(x);
20.4.4.3 - uninitialized_fill_n [lib.uninitialized.fill.n]
template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
-1- Effects:
for (; n--; ++first)
new (static_cast<void*>(&*first))
typename iterator_traits<ForwardIterator>::value_type(x);
20.4.5 - Template class auto_ptr [lib.auto.ptr]
-1- Template auto_ptr stores a pointer to an object obtained via new and deletes that object when it itself is destroyed (such as when leaving block scope stmt.dcl).
-2- Template auto_ptr_ref holds a reference to an auto_ptr. It is used by the auto_ptr conversions to allow auto_ptr objects to be passed to and returned from functions.
namespace std { template<class X> class auto_ptr { template <class Y> struct auto_ptr_ref {}; public: typedef X element_type;
//lib.auto.ptr.cons construct/copy/destroy: explicit auto_ptr(X* p =0) throw(); auto_ptr(auto_ptr&) throw(); template<class Y> auto_ptr(auto_ptr<Y>&) throw(); auto_ptr& operator=(auto_ptr&) throw(); template<class Y> auto_ptr& operator=(auto_ptr<Y>&) throw(); ~auto_ptr() throw();
//lib.auto.ptr.members members: X& operator*() const throw(); X* operator->() const throw(); X* get() const throw(); X* release() throw(); void reset(X* p =0) throw(); // lib.auto.ptr.conv conversions: auto_ptr(auto_ptr_ref<X>) throw(); template<class Y> operator auto_ptr_ref<Y>() throw(); template<class Y> operator auto_ptr<Y>() throw(); }; }
-3-
The
auto_ptr
provides a semantics of strict ownership.
An
auto_ptr
owns the object it holds a pointer to.
Copying an
auto_ptr
copies the pointer and transfers ownership to the destination.
If more than one
auto_ptr
owns the same object at the same time the behavior of the program is undefined.
[Note:
The uses of
auto_ptr
include providing temporary exception-safety for dynamically allocated
memory,
passing ownership of dynamically allocated memory to a function,
and returning dynamically allocated memory from a function.
auto_ptr
does not meet the
CopyConstructible
and
Assignable
requirements for Standard Library
container elements
and thus instantiating a Standard Library container
with an
auto_ptr
results in undefined behavior.
--- end note]
20.4.5.1 - auto_ptr constructors [lib.auto.ptr.cons]
explicit auto_ptr(X* p =0) throw();
-1- Postconditions:
*this
holds the pointer p.
auto_ptr(auto_ptr& a) throw();
-2- Effects: Calls a.release().
-3- Postconditions:
*this
holds the pointer returned from
a.release().
template<class Y> auto_ptr(auto_ptr<Y>& a) throw();
-4- Requires: Y* can be implicitly converted to X*.
-5- Effects: Calls a.release().
-6- Postconditions:
*this
holds the pointer returned from
a.release().
auto_ptr& operator=(auto_ptr& a) throw();
-7- Requires: The expression delete get() is well formed.
-8- Effects: reset(a.release()).
-9- Returns:
*this.
template<class Y> auto_ptr& operator=(auto_ptr<Y>& a) throw();
-10- Requires: Y* can be implicitly converted to X*. The expression delete get() is well formed.
-11- Effects: reset(a.release()).
-12- Returns:
*this.
~auto_ptr() throw();
-13- Requires: The expression delete get() is well formed.
-14- Effects:
delete get().
20.4.5.2 - auto_ptr members [lib.auto.ptr.members]
X& operator*() const throw();
-1- Requires: get() != 0
-2- Returns:
*get()
X* operator->() const throw();
-3- Returns:
get()
X* get() const throw();
-4- Returns:
The pointer
*this
holds.
X* release() throw();
-5- Returns: get()
-6- Postcondition:
*this
holds the null pointer.
void reset(X* p=0) throw();
-7- Effects: If get() != p then delete get().
-8- Postconditions:
*this
holds the pointer p.
20.4.5.3 - auto_ptr conversions [lib.auto.ptr.conv]
auto_ptr(auto_ptr_ref<X> r) throw();
-1- Effects: Calls p.release() for the auto_ptr p that r holds.
-2- Postconditions:
*this
hold the pointer returned from
release().
template<class Y> operator auto_ptr_ref<Y>() throw();
-3- Returns:
An
auto_ptr_ref<Y>
that holds
*this.
template<class Y> operator auto_ptr<Y>() throw();
-4- Effects: Calls release().
-5- Returns:
An
auto_ptr<Y>
that holds the pointer returned from
release().
20.4.6 - C Library [lib.c.malloc]
-1- Header <cstdlib> (Table ??):
Type | Name(s) | |
Functions: | calloc | malloc |
free | realloc |
-2- The contents are the same as the Standard C library header <stdlib.h>, with the following changes:
-3- The functions calloc(), malloc(), and realloc() do not attempt to allocate storage by calling ::operator new() (lib.support.dynamic).
-4- The function free() does not attempt to deallocate storage by calling ::operator delete().
See also
ISO C clause 7.11.2.
-5- Header <cstring> (Table ??):
Type | Name(s) | |
Macro: | NULL | |
Type: | size_t | |
Functions: | memchr | memcmp |
memcpy | memmove | memset |
-6- The contents are the same as the Standard C library header <string.h>, with the change to memchr() specified in lib.c.strings.
See also
ISO C clause 7.11.2.
20.5 - Date and time [lib.date.time]
-1- Header <ctime> (Table ??):
Type | Name(s) | |||
Macros: | NULL | |||
Types: | size_t | clock_t | time_t | |
Struct: | tm | |||
Functions: | ||||
asctime | clock | difftime | localtime | strftime |
ctime | gmtime | mktime | time |
-2- The contents are the same as the Standard C library header <time.h>.
See also ISO C clause 7.12, Amendment 1 clause 4.6.4.